PostgreSQL 9.0.4 Documentation

The PostgreSQL Global Development Group

PostgreSQL 9.0.4 Documentation
by The PostgreSQL Global Development Group
Copyright © 1996-2010 The PostgreSQL Global Development Group

Legal Notice

PostgreSQL is Copyright © 1996-2010 by the PostgreSQL Global Development Group and is distributed under the terms of the license of the
University of California below.

Postgres95 is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and without a written agreement
is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs appear in all copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCI-
DENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS
DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HERE-
UNDER IS ON AN “AS-IS” BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE,
SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Table of Contents

Preface liv
1. What iS POSEZIESQLTeiiiiiiiiiiiete ettt ettt sttt liv
2. A Brief History of POStZreSQLu........cooiiiiiiiieiieeieeiteriteete ettt st ettt esaae b aeenaees Iv

2.1. The Berkeley POSTGRES PrOJECtcccueevuieiiieiiieiieniiesieeieeite sttt sve s esine e Iv
2.2, POSEEIESOS ...ttt ettt ettt st et esat e it e bt e aeenaeesabeebeeaee s lvi
2.3, POSEEIESQLoi. ittt ettt ettt st et e bt et s be e bt e naeesabeebeeaee s Ivi
3. COMVEINTIONS ...ttt sttt ettt ettt st et et e bt et ae et e sa e eate bt sbeeabesbeest e bt sueenaesbeennenbeeneenee lvii
4. Further INfOrmation........cococveriiriiiiniieiencetcest ettt ettt ettt nesee e lvii
5. Bug Reporting GUIEIINES........ccviiiiiriiiniiiiieieerite ettt ettt ettt e beesaeesaee s Lviii
5.1, Tdentifying BUgS ...c..coeiiiiiiiiieeieeieeiteeeee ettt sttt Lviii
5.2, WAL 10 TEPOT..cuveiiieiiieetieiiteeteette sttt ettt sb et s e bt e st e sat e e bt e bt e satesabe e bt esaeesabeenseenseens lix
5.3. WHETE 1O TEPOTE DUZS ...eeeuviiiiiiiiiiieriteeteeit ettt et ettt ettt et e st st e bt e saeesabeeseenaee s Ixi
I. Tutorial 1
1. GENG STATTEA ...cueeieeiieieeiieie ettt ettt et st ae e e sne s enesneae 1
1.1 INSEALIALION ..ttt ettt et e e e e sbe e et e e bt e sbaesbeebeenne 1
1.2. Architectural Fundamentals.............coceeiiiiiiiiiriiiiiiiieeeeecteeeeeete et 1
1.3. Creating @ Databasececveruieuierieeieeiesie ettt ettt et ese et et e eesae et ete e ens 2
1.4, AcCeSSING @ DAtaDASEccveeuieiietieiiiieiere ettt ettt ettt naeene 3
2. The SQL LaNZUAZEooueeuieiieeieie ettt ettt ettt et ettt et sttt esbe e st e e sb e et e steeatenbesseenbenbeans 6
2.1, INEEOAUCTION 1.utiiieitiiieteet ettt ettt b e et b et e bt eat e te e bt e e e s beene e beebeeneeneeeae 6
2.2 CONCEPLS ...eneeeeeieeteettete et ettt et et s bt et e bt e b et e e bt e st e sbeea e et e ebees e bt eaeenbesbeemtesbeestenbeebeeneeneeene 6
2.3. Creating @ NeW TabIecccoiiiiiiiiiiieieeeeeee ettt 6
2.4. Populating a Table With ROWScccoeriiiiiiiiiiieiectee e 7
2.5. QUErYING @ TaADIEooueiiiiiiiiiiiiiee ettt 8
2.6. J0Ins BetWeen Tables.cccoiiiiiriiriiiiiieieneeteestee ettt s 10
2.7. AgEregate FUNCHIONScoeeviiiiiiirieeiteteeteeteste ettt sttt sbe e eaees 12
2.8 UPAALES ...ttt sttt ettt ettt ettt et b ettt e b et bbb bbb et b enees 14
2.9, DIETIONS ...ttt sttt ettt ettt ettt st e e b e eb et ebeetesbe et e b e et b et sbeeneesaeenaen 14
3. AdVANCEA FRATUIES ...cuiiiiiiiiiiiiiiieiteteecee ettt ettt ettt s ettt st et sbe e sbeeneen 16
3.1 INEEOAUCTION 1.ttt ettt sttt ettt bbbt sbeeneesueenees 16
3.2 VIBWS ittt ettt ettt ettt st h ettt e be et bbbttt ebe et saeeneen 16
3.3, FOTEIZN KBYS....iiiiiiiieiieiieete ettt ettt ettt ettt sttt e sat e st e st e ebeesaeesaseensaensee e 16
34, TTANSACHIONS ..c.eevteniiiietieteete sttt ettt ettt et et st e e b e eet et eae e aesaeess e besbn et e sbeeneesaeennen 17
3.5. WIndOW FUNCHONSoouiriiiiniiiieniinieieeieetentcet ettt ettt et sae e e 19
3.6. INHETILANCE ..ottt ettt et sbe e s 22
3.7 CONCIUSION ...ttt sttt ettt ettt et ettt e b e et eae e saeess e b san et sbeeneesaeennen 24

I1. The SQL Language 25

4. SQL SYNEAX ..entiiieiieiieiee ettt ettt e sttt a e et st e n et ne et s re e neeane 27

4.1, LeXiCal SIUCTUTE.eiitieiiieieeieeite ettt ettt et ettt st e bt et st e nbeesaeesaee s 27
4.1.1. Identifiers and Key Words.........ccoceeviiriiniiiniiniinieieeeetceeeeesee e 27

A 1.2, CONSLANLS .euvteeieeuieeieeeite et et et te sttt et e bt e sat e et e bt esbe e s bt e bt esbeesabeebeenbeesaseeseenseenas 29
4.1.2.1. String CONSLANLScceiuiiiiiiiiriiiiiiieeee ettt e 29

4.1.2.2. String Constants with C-Style ESCapescccocevveveeirenenenenreneecnnenen 29

4.1.2.3. String Constants with Unicode Escapes..........cccceeeeieneneenenenieniennenne 31

4.1.2.4. Dollar-Quoted String CONSLANTSccerueerieriieieniieiieee e 32

iii

4.1.2.5. Bit-String CONSANESeevveeruieriieiienienieeieenieesteeteesieesiresateesaeesieesaees 33

4.1.2.6. Numeric CONSLANLSccccvruiiiriiniiieiiieieiee e 33

4.1.2.7. Constants of Other TYPEScccueevuerrrierieriiiiiienieeree ettt 33

1.3, OPCTALOTS ...ueeneieeiiieieeeite ettt ettt et e bt e s et e s bt e bt e sbtesabeebeesaeesabeeseesbeesaseeseenseenan 34

4. 1.4, SPECTial CharACLEIS....ccoueiruieeiieniieniieeitette ettt e rite sttt ettt e sttt sbeesbeesareebeesaee e 35
4.1.5. COMMENLScueniiiiriiieiieie ettt ettt ettt n e e e e st ne s b e nesaeenee 35
4.1.6. LeXical PreCEARICEcooviiiieiiiriiiiiteiteeite ettt ettt 36

4.2. Value EXPIEeSSIONS.coouiiiiiiiiiiiiiieiee ettt ettt s 37
4.2.1. Column REfEIENCEScouiiiiiiiiniiiiteitere ettt 38
4.2.2. Positional Parameters........c.cceeveeriiriiinieniiiieeteste ettt 38
4.2.3. SUDSCIIPES ..ttt e e e 38
4.2.4. Field SEIECLIONoeuieuiiiieiieiecteeete ettt ettt st e e ene s 39
4.2.5. Operator INVOCATIONScceecuiiiiiiiiiiieie et 39
4.2.6. FUNCHION CallS ..ottt st 40
4.2.77. Aggregate EXPreSSIONS.eeruiitirieriieiieienttete ettt sttt et te b eeee e see s 40
4.2.8. Window Function Calls...........cceeoieiiiiininieieneeieieseee e 41
4.2.9. TYPE CASS ...t e s 43
4.2.10. Scalar SUDQUETIEScoouerteriertirieieeitete ettt ettt see e 44
4.2.11. Array CONSLIUCLOTScevirutenietieiteteeitetesteente st st ete st eeate st sieesee bt etenbesssensesbeene 44
4.2.12. ROW CONSIIUCLOTSeviviriieienienietietesiestesteeeiteie st sttt ete b ssesaesnesneneenesaens 46
4.2.13. Expression Evaluation RuUlesccccoocoviiiininiininiiiecceecceeee 47

4.3, Calling FUNCHONS.couteieriieiitieitenieeitete sttt ettt ettt ettt sbe et s e e b sbe et saeene 48
4.3.1. Using positional NOtAtIONcc.eeverierieniineiiienenieienteetente ettt 48
4.3.2. Using named NOTALIONco.eevuerierienienieienieetenesitetesteeitenteeseeseesieesenbesesenesbeene 49
4.3.3. USing MiXed NOTALIONveevieriieriieriieniieeieesieesttesetesteesteesaeesbeesseesseeseseesseesseenes 49

5. Data DefINITIONc.couiiiiiiiiiiicicicc e e 51
5.1 Table BASICSoouiiiiiiiiiiiiiicicicrccetce e 51
5.2. Default ValUCSc.ccovuiiiiiiiiiiiiiiiiictccc e 52
5.3 CONSILANES ...c.oviiiiiiieieeteece ettt st saa 53
5.3.1. Check CONSLIAINESc.eiuiiuiiiiiiieieiiii it e 53
5.3.2. NOt-NUll CONSIIAINLSooviiviiiiiiiiiiiiiiiieeee e 55
5.3.3. UnNiqUeE CONSLIAINES.eeriiiriiieiieniienieeieesite st eieeieesiteeteebeesbtesateebeesbeesasesaseennes 56
5.3.4. Primary KEYS....oueeouiiieiieiieeiteie ettt s 57
5.3.5. FOreign KeYScouiiiiiiiiiiiiieienieeeeeeteetee ettt 58
5.3.6. EXClUSION CONSIIAINLSeeruvieiieiieriieeieeiee sttt ettt st ete e b e st s 60

5.4. System COIUMIScc.coouiiiiiiiieieieeeieee ettt et et 61
5.5. Modifying TabIes........ccooiiiiiiiiiiiiicieeee et 62
5.5.1. Adding @ COIUMNcc.ooiiiiiiiiiiiiiceeeee e 63
5.5.2. Removing @ COIUMINccoiiiiiiiiiiiiiiiiiiiiece e 63
5.5.3. Adding @ CONSIAINEcc.eeriieeieiiitieiete ettt ettt et be et e eneenes 63
5.5.4. Removing @ CONSIIAINEceueeiirtirierieetieieetteie sttt et ettt eeesaeeeesbesseeneesneenes 64
5.5.5. Changing a Column’s Default Value...........cceoiiiriiiiinieninieeceeeeeeeee 64
5.5.6. Changing a Column’s Data TYPEcceeieruirieriiiieierieeieeecee e 65
5.5.7. Renaming @ COIUMc..coouiiuiiiiiiiiiieieeieie ettt 65
5.5.8. Renaming @ TabIecocoevuiiiiiiiiiiieiieeeeee e 65

5.6, PLIVIIEEES ..ttt sttt et st b et eb et b naen 65
5.7 SCREIMAS ...ttt sttt sttt st 66
5.7.1. Creating @ SCREMAc..cciiiiiiiiiiiiiieeetee ettt 67

5.7.2. The PUDLIC SCREMAveiiiiiiiiiieceireee ettt et e e e 68

5.7.3. The Schema Search Path.........c..c.ccoceiiiiiiiiniiiiniicccccceeeeeeee 68
5.7.4. Schemas and Privil€@es........ccoeeriiriiiriieniiiniieieeieeree ettt 69
5.7.5. The System Catalog SChemacoceeviiiiiiiiiiiiiieeeeeete e 69
5.7.6. USAZE PAtEINISeiuvieiieiiiiieeieeite ettt ettt st e e s st 70
577, POTabILILY ...ttt 70

5.8, INNEIILANCE ..ottt ettt e st st beesae e sabeenbeenbee e 71
5.8 1. CAVEALS ..ttt ettt st ettt sttt et b e st be e st eabs 73

5.9, PArtitIONINGc..eoveiiiiiiiieiieieeceeeeetet ettt sttt et st et ne e e eanes 74
5.9 1. OVEIVIEW ...ttt ettt sttt ettt e b e st et e b e smbesateeane 74
5.9.2. Implementing Partitioningcccooeeiiiiiiiiiniiieeneeeceese e 75
5.9.3. Managing Partitionscoccoerveieirininiinenieeeeeese ettt 78
5.9.4. Partitioning and Constraint EXCIUSIONcc.coecveirinininienieieinineeeeeeeicenenne 79
5.9.5. Alternative Partitioning Methods...........ccccoerierieiriinienenienieieeneneneceeeeeenee 80
5.9.0. CAVEALScuieieiieiteeitet ettt ettt sttt ettt e a et bt ettt a et e ae et bt et et st et b enes 81

5.10. Other Database ODJECLSc.cerueruerieriirtieiene et site ettt e st besete e b eesaeenees 82
5.11. Dependency TraCKingcooeeeieririeriinieiesiee ettt sttt 82
6. Datd ManipULatiOn.........ooueiuieiinieienie ettt ettt sb ettt st e st bt et e b e eat et sbe et e sbeeneen 84
6.1. INSEIting DIAtaoiueiiiiiiiiiiiiee et sttt b e e 84
6.2. UPdating Datal......ccueeuiiiiriieiiniiiterteeiteeet ettt ettt ettt st ettt ebe e b eaees 85
6.3. DEleting DIata.......ccueruiiiiriieieniietereeiteteet ettt ettt sttt sb e s 86
T QUBTICS ..vveeevieeeetieeeiteeeettee ettt e eetreeeetaeeetaeeeteeeetaaeeaaseseasseseasaeeatsseensseeeaseseessesenssaeensseeentsesesseeersaans 87
T 1 OVEIVIEBW ..ttt ettt ettt ettt st b e ea et e bt et s bt et e be s bt entesbeenee 87
7.2, Tabl@ EXPIESSIONS ..cuveevieiiiieieeiieitieeieeieenteesiteeteeteesetessteesbeesssesssessseesaesssesnseenseesssesnsenn 87
7.2.1. The FROM CLAUSE.......coveruiiiinieeiirieeiteieeitete sttt ettt ettt nbe s s b 88
7.2.1.1. JOIN@d TaDIESeevieiriiiiieiiieeieneetetece ettt 88

7.2.1.2. Table and Column AASES.......c.ccoeruerieriecienirieneneeteneeretceeeee e 91

T.2.1.3. SUDQUETIES ...eonvveenrieiieniieeiieritenite ettt et st ebeesieesatesabeebeesaeesabeenseenaeenes 93

7.2.1.4. Table FUNCHONS ..c..cocviviirieiiniieieneneeteeteeteete ettt 93

7.2.2. The WHERE ClaUSE.....cc.eeiiriirieiiniieieienteteeteete sttt sttt eaenne s s sneene 94
7.2.3. The GROUP BY and HAVING ClauSes........cccceviriiininiiniiiiiiiiicicieiceecenene 95
7.2.4. Window Function ProCESSINGceevueeriiiriiiiieiniienieeieeieesite et 97

7.3 SLECT LUISES ..ttt ettt et sttt s 98
7.3.1. Select-LisSt IEMSccueeiiiiiieiiceieieeecteecee e 98
7.3.2. Column Labelscooiiiiiiiiiiiieiieee et 98
7.3.3. DISTINCT cueieueeureieeieenteeieene et et st eee et st et eaeeae s st e e e s e s e easeene e e e sae e s ennesanennesneenne 99

7.4. Combining QUETIES......c..coueriiiiriieiiiieeerte ettt ettt st ene e s ene s e e esnesaeesnesaeennens 100
7.5, SOTtING ROWS ..ot s 100
7.6. LIMIT QN OFFSET..cuiiiiiiiiuieteeiieeeteeeeste st eae st eae et esee e saeenesaesaeesesnee e esaesneesaesaeennens 101
7.7 VALUES LISES wvtuiitiitirieieieiteie ettt ettt sttt ettt ettt s st ae et et ene e 102
7.8. wITH Queries (Common Table EXPressions)ccceeeeierereeiienenienieeieeiesieecesie e 103
8L DALA TYPES .. ettt ettt ettt et sttt b e st et be e st e b e ae e s ae e e b e e sbeenaeeea 107
8.1 INUIMEIIC THPES ..ttt ettt ettt ettt et et e b et e sttt et et e ae s bt eneenbeeaeenee 108
811 INtEZEL TYPES .cuviiniiiieiiieite ettt sttt st s 109
8.1.2. Arbitrary Precision NUMDETScccueriiiiiiiieienineeceee e 109
8.1.3. Floating-Point TYPEScecueruiriieieniieieniieitente sttt 110

814, SEITaAl TYPES ...eueentieiieiieieeterte ettt sttt sttt ettt sbe e b e 112

8.2. MONELATY TYPES ..ttt ettt sttt ettt et e e st e eae e 112

8.3, CRATACTET TYPES .eveereiniieiieeiteeiterite ettt ettt ettt e st e st e bt e st e s bt e beesatesateenbeesanesasesabeas 113

8.4. BINAry Data TYPES ...cccueeruieriiiiieniteete ettt ettt ettt sttt e st s te b e st e saneeabees 115
8.4.1. bytea heX fOIMALccooviiiiiiiiieee ettt e e 116
8.4.2. bytea €5CaPe fOIMALccceeviiiiiiiiieiieeieee e 116

8.5. Date/TIME TYPES..cuueiiiiirieriieiterteete ettt ettt e b e st st e b e st e sabe s beesaaesatesabees 117
8.5.1. Date/Time INPULcocoiviiiiiiieieieieect e 119

8.5, 1.1, DALES ..ttt et e 119
8.5, 1.2, THIMES -ttt ettt sttt st 120
8.5.1.3. TIME SEAMPS ...ceviiieniiiieieieeieeeeteee et e s 121
8.5.1.4. Special ValUesccccoceeviiiiiiiiiiiiiiiinicceeeeeeee e 122
8.5.2. Date/Time OULPULoouiiiiiiiiieiiiieiet ettt s 123
8.5.3. TIME ZIOMES ...cnveeneiiinieiieeiteetee ettt ettt ettt sttt e st e beesae 123
8.5.4. INterval INPUL.....cooviiiiiiiiiieiee et 125
8.5.5. INterval OULPUL ..cc..eiiiiiiieiiieieeeeee ettt st 127
8.5.6. INLEINALS......ouiiiiiiieiieie ettt 128

8.6. BOOLEAN TYPEC....ueieieniiiieiieieei ettt ettt sttt ettt ettt 128

8.7. ENUMETAEd TYPES ...couveeeiiiiiiiieniieeite ettt ettt ettt sttt st erees 129
8.7.1. Declaration of Enumerated TYPeS.......ccccecteririerieninienieneeieneetene e 129
8.7.2. OFAETING ..ottt sttt ettt et sbe bt e b eaeenee 130
8.7.3. TYPE SALBLY .ttt 130
8.7.4. Implementation Details.........ccceveririiniiniiniiiiiencee e 131

8.8, GEOMELIIC TYPES ...eeeutiiiriieiirtietiettete ettt ettt ettt ettt b et e bt bt e s bt e b eaeenee 131
881 POINLS ...ttt s 132
8.8.2. LINE SEZMENLS.......eouieiiriiiiiiriiiiietenieet ettt sttt ettt s 132
8.8.3. BOXES. ..ttt 132
884 PathS ..o 133
8.8.5. POLYZOMS. ...eouiieiiiiiieieeeecte ettt ettt sttt et st e enbe b neee 133
8.8.60. CICTIES ...t 133

8.9. NetWOrK AddIess TYPES....cccveeriierierieeiieniesie et estte st ettt te sttt e st e sbe e beesaaesaneeabees 134
80,1 LML ittt 134
8.0, 2. CAAL it 134
8.0.3. ANEL V8. CaOT ettt ettt ettt ettt et et sttt st e be b saee 135
8914, MACAAAL tuttetiiiieiiie ettt ettt ettt st et st e b et s b e b saee 135

8.10. Bit StrNG TYPES c.eeeueeiieiieieeiieieeitetert ettt ettt st s 136

8.11. TexXt SEArCh TYPEScueeieiieiieiiiietere ettt s st e 136
LT B R Y ol USSR 137
LT B Yo b U= o SRS 138

812, UUID TYPE vttt st sttt et sttt sttt ettt e st ettt eae st b bt eneeaeenes 139

813, XML TYPE -ttt sttt at bbb 140
8.13.1. Creating XML ValUEscccueevuiimiiniiiiieiiecteetc ettt 140
8.13.2. Encoding Handlingccccoeieiiiruieiiiniieeie e 141
8.13.3. Accessing XIML ValUes.......cccceriiuieiiniieienieeieeiesieee et 141

Bl ATTAYS .ottt ettt et ettt et sat e st b e beesaaeeareen 142
8.14.1. Declaration Of Array TYPeS.....cceeeerierieierieriieierieeetee ettt 142
8.14.2. Array Value INPUL......cc.cooiiiiiiiiiiieiee et 143
8.14.3. ACCESSING AITAYS ..couviuieiieiiiiieieeiteitent ettt sttt sttt ettt see et e st sbe et e b eaeenee 144
8.14.4. MOAIfYING ATTAYS...c.eirteeuieriiriieieniieitentt ettt sttt ettt sttt et e e st e b eaee e 146
8.14.5. Searching i AITAYS......cccuererierieriieientieitente sttt ettt ettt 149

Vi

8.14.6. Array Input and OULPUL SYNEAXeerieriiieriierierie ettt eiee et 149

8. 15. COMPOSILE TYPES ..eeeuvieneieeiiiiiieniienie ettt ettt e st st e bt e s tesabe e bt e satesabeebeesasesasesnseas 151
8.15.1. Declaration of CompOSIte TYPES....cccveruiervierieriiiiieniienie ettt 151
8.15.2. Composite Value INPUL........c.eevueeriirieniieiienteee ettt 152
8.15.3. Accessing CompPOSIte TYPES .ecuveervierieriiiriienierte ettt sttt st 153
8.15.4. Modifying CompoSite TYPES......ccceeverrieierierieienieniereneeeenre e 153
8.15.5. Composite Type Input and Output SYNtax.........cceecveevereeceeneereeneneeseeneneenn. 154

8.16. Object Identifier TYPEScoveciirieiiiriiiieieeieee ettt 155

817, PSEUAO-TYPES ...ttt sttt s 156

9. Functions and OPETALOLSccevuiririiiriirieieeiteeentt ettt sttt st eae st e ae s ene e eanens 158

9.1. LOZICal OPETALOTSoviiuiiiiiieieiieiete ettt e st s eanens 158

9.2. CompariSON OPETALOTS.......c..coueeiuiruiiiiiieieie ettt s a e sae e sae e eanens 158

9.3. Mathematical Functions and OPerators............coccverueeerrereniinrenienreeeeneseseeseeneneeneene 160

9.4. String Functions and OPETatorscc.ceuerveirrirerieniereieeneneiereseeeeneereeresiesaessenseneeneene 164

9.5. Binary String Functions and OPeratorsc.cceeeveveirireniinreniereeeenenesieseenseneenene 177

9.6. Bit String Functions and OPeratorsc.ceceeerererueeeireneniiereneereeeneeresesaessenneneeneene 179

9.7. Pattern MatChINGcccovevieiiiiiiiiitinieeteteteese sttt sttt s e 180
0. 7.1 LIKE i e s 180
9.7.2. SIMILAR TO Regular EXpPressionsc.ccccueveeeerienerienenienieniieienieeeeee e 181
9.7.3. POSIX Regular EXPreSSionscccceeuerierieriiniienienieeienienitetesteeeeniesieeneesieennens 182

9.7.3.1. Regular Expression Detailsc.cccceeervieninieneninnieneniencecene e 185
9.7.3.2. Bracket EXPIessionsccocceuererierieneniienineeneseeienieeie e 188
9.7.3.3. Regular EXpression ESCApes.c.ccccererieniriininennieneniececeee e 189
9.7.3.4. Regular Expression Metasyntaxcoccecevereenereereeneneeneneenenennens 191
9.7.3.5. Regular Expression Matching Rules...........ccccoeveeniiniiinceenienienieeen, 193
9.7.3.6. Limits and Compatibilitycccceecuerreerienieriieeniieniiesreeieeiee e seeeeees 194
9.7.3.7. Basic Regular EXPressionscocueeveerieeniensieenieenieesieeieesieesnesveeneees 195

9.8. Data Type Formatting FUNCHONScocueiiiiiriienienieeieeteste ettt 195

9.9. Date/Time Functions and OPerators.........c.ceveereerieerieeneeniessieesieenieeseeesseesieessessessvens 202
9.9.1. EXTRACT, QAT E_PATE tttiieiireieeeieirreeeeeiireeeeeeeiireeeeeeeitrreeeeenseseeseestrseeeseesssreeeens 206
0.0, AT £ UIC teeeeeee e et e e e e e e e e et eeeeaee e e e e e e e et et ea i aeaaeaaaaaaaaaaes 210
9.9.3.AT TIME ZONE...iiiioiiiriiiierciiereietiietest ettt s et s st s s sessesenserene e 211
9.9.4. Current Date/TIimecccooiviiiiiiiiiiiiiiiicce s 211
9.9.5. Delaying EXECULION......c..cocuevuirieriiiieieieeieieecetesee ettt 213

9.10. Enum Support FUNCHONScceiiiiiiiiiiiiiiiieieniecietceeere et 214

9.11. Geometric Functions and OPerators.............cccceeeereriieieerueneenieneeresieeeeeeeeesneseenens 215

9.12. Network Address Functions and Operators............c.cceeceevuereerueneeceeneeieneeeeenee e 219

9.13. Text Search Functions and OPerators............ccceeueeueruieiieniiiienieneeieieeeeee e 221

0.14. XML FUNCHONS .c..vteeiieiiieiiieeiteeieesit ettt ettt sete et e sit e sttt e b e st e s be e beesabesateeabees 225
9.14.1. Producing XML CONtENL........ccecueirirrinienienieieinenenieneeeeeeeeneeresreseeeeeeneenes 225

9.14.1.1. XIMLCOMMENT 1euvieeeeiieeiieeeitieeeireeetteesteeeeteeeeseeesseeessseeenssaesenseeennseens 225
0.14.1.2. XINLCONCAL ttreitiieeiiieeiieeeiiee ettt e eeteestteesteeeetaeeeaeeesnseeennsaesenseeennseens 225
0.14.1.3. XINLELEMENT terueieeiiieeiieeeitieeeiteeetteeetteesteeeebeeesbeeesnseeenssaesenseeennseens 226
.14, 1.4, XINLEOTEST ttriiiieeiiieeiiee ettt e ettt e e ite e etteesteeesbteeeaeeessbeeennseeeeaseeeanneean 227
0.14. 1.5, XIMIP I teotierieeieeciierteete et et et e steesteebeestaeeveebeesbeesnseenseensaessnesnsesnsens 228
0.14.1.6. XINLT OO terureeureeiieriieeieeteesteesteeseteesteesseessaesseeseesseesnsesnseenseesssesssesnsens 228
.14, 1.7 XML AGG ttiiitiie et eeie ettt et e ettt e et e e et e e et e e ete e e e tee e e reeeetaeeearaeeaareaan 229
9.14.1.8. XML PrediCates.c.coevueieiriniriinieiereeeieeieieieeeeeieee e 230

Vii

9.14.2. Processing XIMLcoiiiiiiiiiiiniieiieeieesiee sttt ettt et site st e ebeesaeesaneens 230

9.14.3. Mapping Tables t0 XIML.....ccccooviiriiiiiiiiieniieeieeieesite sttt st 231

9.15. Sequence Manipulation FUNCHONScccueivviirieniiiiiieiienieeieeteite e 234
9.16. Conditional EXPIeSSIONS......cccuertterierieriieittesite st eteesieesiteste et sbeesteebeesbeesaresaeesabeas 236
9.16.1. CASE ottt 236
9.16.2. CORLESCE ..uvteutetiriiereniieitetteteete st ese st setenresteesnesaeeseessesueensesseeaseaesueennesaeennens 238

0. 10,3, NULL T ciutteitteitieeteestee sttt st et e bt e st e ete et e s bt e sabesabeesbtesabesateebeesbtesateenbeesseesaneans 238
9.16.4. GREATEST QN0 LEAST c.uttrieeteertteriieeiteesieesiteetesteesseessesateesseesseesasesnseesseesseeens 239

9.17. Array Functions and OPETAtOLScecueruirierieriieieniieieteeeeniesieeresieeeeaeeneeseesaeenens 239
9.18. Aggregate FUNCHONScceiiiiiiiiiiiiiieice et s s 241
9.19. WINAOW FUNCHONSeitiiiiiieiiiiieeiteeteee ettt et sttt et erees 245
9.20. Subquery EXPIeSSIONScccciiuiiiiiiiiiiiiiiieie sttt s 247
0.20. . EX TS TS i iuttettenite ettt ettt ettt ettt ettt ettt st e bt et s et e b e bt e sat e beesbeenaaeea 247
0.200.2. TN 11ttt et b bbbt et ae et e be bt et e bt et e ete et etesaeenten 247
0.20.3. NOT ITNutitierteeniteeieesteentte st et e st ee st e et et esbeesate st e e s beeemtesate e bt esbeesateenbeenneenneeens 248
9.20.4. ANY/SOME .uvtiiueiiieeieenite sttt et st et ettt sate st e s b e satesate e bt e sbeesateebeesseesaaeens 249
0.200.5. AL 1ttt e bbbt et a e et b e bt et b et e st eatebesbeenten 249
9.20.6. ROW-WiSE€ COMPATISOM.....eeuiruieniiriieiienieeiieteeteete st este e sitetesteeseenaesaeenaesbeeneens 250

9.21. Row and Array COMPATISOISeueeuvertiruieniiriieienteetenteettentesueeraesbeessestesseentesseeneesueennens 250
0. 211 IN e et 250
9.21.2. NOT INuuiiuiiuiriiietetetetteie ettt ettt sttt et et 251
9.21.3. ANY/SOME (QITAY) «.vververreemrentinreeneenieetententtentesseeseesueeseensesseesensesseensesmeensesseensens 251
9.21.4. ALL (AITAY) cveevterrerreetenieetenteeieetesteete st stteste st estesae et estesbtestesbeeseenaesaeeneesaeennens 251
9.21.5. ROW-WiS€ COMPATISONuvirriiriieriieeiieeiienireeteeteeseesseeteesseessaesnsesnseessnesseens 252

0.22. Set Returning FUNCLIONScccveviiierierieeiieiteste sttt sttt et sveeae e e senessseeneees 253
9.23. System Information FUNCHONScccuevviiiriiinieniiiieeieeie et 255
9.24. System AdminiStration FUNCHONSeecuieriirrieriiiiieiienie et 265
0.25. TriGZET FUNCHONS ...ooutiiiieiiieieiiieriteete ettt sttt ettt ettt et e st e e be et e sabeenbeenbees 273
1O, TYPE CONVETSION. ..ccuuiiriiiiniieiieniieeteesttesttesteeteesteesiteeteebeesstesabessteesbaesasesateenseesstesasesnseessaesnsenns 274
JO.1. OVEIVIBW ..ottt sttt sttt ettt sttt st sttt sae st e sae e e b eenenee 274
TO.2. OPETALOTS ...euvveeutieiieeiieeteesitesite et e bt esitesatesbe e bt e sateeabe e beesbaesabeesbeebeesabesaseenbaesasesasesnseas 275
1O.3. FUNCLIONS ...oviiienieiieitetieieete ettt ettt ettt et st s st ne et sae e e b eanenee 278
1O.4. ValU@ SOTAZEceouieeiiieiieiieeite ettt sttt sit e et e bt e s bt st e bt e bt e sabesabe e beesateeaseeabeas 281
10.5. UNION, CASE, and Related CONStIUCES..........cccviieieeiiirieeeeeiieee e et eerree e e e e e 282
L1 TAEXES vttt ettt sttt et e st et e bt e s bt e eabeea bt e s bt e satesateesbeesbtesabeenbeesaaenaeeens 284
111, INEOAUCTION ...ttt ettt ettt st sbe e sttt et e st e ebeebeenaee 284
T1.2. INAEX TYPES...etinriiiiiieeerieee ettt ettt st 285
11.3. Multicolumn INAEXESceeueeriiiriiirieniiieieetete ettt sttt st 286
11.4. Indexes and ORDER BY .c..ceeteriierieenieeriteeieenieenitesteesieenseesaseesueesseesasesseesseesssessesseenses 287
11.5. Combining Multiple INAEXESceeeieriiriiieiieeieieeete ettt 288
11.6. UnNIQUeE INAEXEScvenvenreiieiiiiiriisteieieteieeitee sttt ettt sttt s et enee 289
11.7. Indexes 0n EXPIESSIONSccceuivririerieieiriinerienieteieteiteteeteste sttt e s seeeneenens 289
11.8. Partial INAEXEScc.eeueeiiriiiieiieieee ettt ettt et s 290
11.9. Operator Classes and Operator FAmiliescoceeevveinininencnieniniinnenesieicieeenns 293
11.10. Examining INdeX USAZE........coueeuiririeniiiiiiieitceieieeteete ettt st s 294
12, FUIL TEXE SCATCH ..ottt ettt s b et b et e et b eaesbeenaens 296
12,1, TNEFOAUCTION ..ottt ettt sttt st sb ettt sbe et b eneens 296
12.1.1. What Is @ DOCUMENT?....c..ocouiiiiiiriiiieieiieenicetesee ettt 297

viii

12.1.2. Basic Text MatChingccecuieriienieniieiienieeete ettt ettt e 298

12.1.3. CONTIGUIALIONS ...c.uveriiieiieriieeieeiteste et ettt st e sttt e satesabeebeesatesatesnbeenseesanesas 299

12.2. Tables and INAEXES........cc.ccueiiiiiiiiiiiiiiiiiiiece e 299
12.2.1. Searching @ Tablec.coovieeiiiiiiinierieeieetee ettt et 299
12.2.2. Creating INAEXES ...cccveevvierieriieiieniteeee ettt ettt sttt et e e e saee e 300

12.3. Controlling Text SEArchcccceceririeriiieienicieeeeetereeree et 301
12.3.1. Parsing DOCUMENLScccoeouirieriiriieienienieieeeeeeste ettt eanens 302
12.3.2. Parsing QUETIEScccuerueeuieiieiieierieeeeieeieete ettt s enesaeeanens 303
12.3.3. Ranking Search Resultscccccocioiiiiiiiiiniiiceceeeeee e 304
12.3.4. Highlighting ReSUltsccooiiiiiiiiiiiiiiiiice e 306

12.4. Additional FEAtUIEScc.eeviiriiiiiiiieniie ettt sttt st 308
12.4.1. Manipulating DOCUMENLS........ccceruirierierieieetieie ettt 308
12.4.2. Manipulating QUETIES.......c..coveeuereiririinrenienieteeeitee ettt eeeneenes 309
12.4.2.1. Query ReWIIHINGcccovevieiiiriiririieieeeceteesestceetee et 309

12.4.3. Triggers for Automatic UPdatescceceeiuerieiieririenieniieesieeee e 311
12.4.4. Gathering Document StatiStiCSccevuerterierieiienieeienienieeesie et seee e 312

12,5, PATSEIS .ttt ettt sttt st et e sttt e st ebe e 313
12.6. DICHONALIES.cveveieieiieiieiieit ettt sttt et eae et b sttt sae et ne e eneenees 315
12.6.1. SEOP WOIAS ..ttt sttt sttt s sbe e 316
12.6.2. SIMPIE DICHONATY ..cvventieiieiieiieierieeteieeitet ettt ettt s e e sbeeaaens 317
12.6.3. Synonym DICHONATYccceevuireeriiriiienieniieeneete ettt eanens 318
12.6.4. Thesaurus DICHONATYc..ccoviveeriiririenienieienieetese ettt seeeee e eaeens 320
12.6.4.1. Thesaurus Configurationc..ceceeeeveererreeneneerieneneeneseeneeseenens 321

12.6.4.2. Thesaurus EXamplecccceeveeriieiieeiienieniecieeseesre e 321

12.6.5. ISPEIl DICHONATY ...c.uveetieiieeieeiieniiente ettt sitesitesbe et esieesebeebeesseeseneenseeseenens 322
12.6.6. SNOWDAIl DICHONATYeovviieiiieiiieiieieeit ettt ettt st ebe e 323

12.7. Configuration EXample........cccueeiiiriiiniiiiiiiieiiesieeieeiteste sttt st 324
12.8. Testing and Debugging Text S€archcccceeveviiiiiienieniieieeieete e 325
12.8.1. Configuration TEeSHING.....cccueeeveeriierieriieiieierie ettt ettt e e 326
12.8.2. ParSer TESTINZ ...ceeuveeieeiierieeie ettt ettt ettt ettt sttt e st satesbeesaeesaneeas 328
12.8.3. DIictionary TeSNZ.....cccveerierieeriienieeiteieeniteste sttt sttt et e st sbeesaeesaneens 329

12.9. GiST and GIN INEX TYPES .cuvveruvirrriiriieriiieitenitesite ettt ettt ettt e esiteseeeabees 330
12.10. PSL SUPPOTL..c.ntiiniiieiieiiieitete ettt ettt ettt s bt st e bt e bt e sabesabe e beesatesaneeabees 331
12,11, LIMIEATIONSeveeitiiieiienieeit ettt ettt ettt ettt e sae e ae st enesbe s st saeennesaeennens 334
12.12. Migration from Pre-8.3 Text Search..........ccccoccevieiiiriiiininiiiieienceeecenees 334
13. ConcurrenCy CONIOL......cc.eiiiriiiiiiiiiieieeeeteee ettt st st a e st ne e enens 336
13,1, INEFOAUCTION ...ttt ettt ettt et sbt e st et e b e st e ebe e b e naee 336
13.2. Transaction ISOLAtIONceeeiriiiiiiriiniieieeeert ettt st 336
13.2.1. Read Committed Isolation Levelcooieririiiniiniiniiiiineciceeeeeee 337
13.2.2. Serializable Isolation Level...........coooiirieiiiieiene e 338
13.2.2.1. Serializable Isolation versus True Serializabilityc.cceccevevveenene 339

13.3. EXPLCIt LOCKING ..ottt et 340
13.3.1. Table-Level LOCKS ...ttt 340
13.3.2. ROW-LEVEl LOCKS ..c..eeiiiiiiiiiiiietecceece ettt 343
13.3.3. DEadIOCKS. ... vttt ettt s 343
13.3.4. AdVISOIY LOCKS ..cviiiiiiieiieieeee et 344

13.4. Data Consistency Checks at the Application Level..........ccocceveriiieniniininienenenne 345
13.5. Locking and INAEXES.....c..coveriiriiiiiniinieieiteesicete ettt sttt e 346

14, PerfOrmManCe TIPS .eeveereeeriieniieniie ettt sttt et ettt e st e st e st e bt e satesateesbeesstesateenbeesanesnneens 348

14.1. USING EXPLATN teevuteeuteeteertierterteesseesseessseenseesseesssessseesseesssessessseesseesssessseesseessesssesssees 348
14.2. Statistics Used by the PIannerccccovvviiiieniiniiiiiiienieeieeeete et 353
14.3. Controlling the Planner with Explicit JOIN Clauses.........ccocceevveerierienieeenieenieniennneen 354
14.4. Populating @ Databasecccueevueiriienieiiieieeitesteeeet ettt sttt 356
14.4.1. Disable AULOCOMIMILcccueriiiriieriieriieiteniteete ettt sttt e e st e s eas 356
14.4.2. TUSE COPY uutetieuieieeteeeesteetteteettentesteetesseententesseeneesseeneesesseensesseensasesneensesseensens 357
14.4.3. REMOVE INAEXESeouveiniiiiieniiiiieniteeitc ettt sttt st 357
14.4.4. Remove Foreign Key COonsStraintscccceeeeveereeeeneneesenieeeneeeeneeseenens 357
14.4.5. Increase maint enance_WOTK_MEM .uiiuueeeireerieeeeeeeeeeeieiisrsreeeeeeeeeeeeeeeeeeeenns 358
14.4.6. Increase checkpoint _SegMENTS civiiiieercieeeeieeeeieeeireeesereesseeeseeeesseeenseeens 358
14.4.7. Disable WAL archival and streaming replicationccceeeeeeeneeeeneneneens 358
14.4.8. RuUn ANALYZE AftEIrWArdSc.eevveruieieiieeiieieeteeee ettt 358
14.4.9. Some Notes AbOUt PZ_dUMPc.coceruirirrerierieieieinenenteteeeeee et 359

14.5. Non-Durable SEttNEScccecerirririerieieiriinenenieteieret ettt ettt st s neeeneenens 359
II1. Server Administration 361
15. Installation from SOUICE COAEcoiiriiriiiiiiriiiiiiieteeeitee ettt 363
15,1, SROTE VEISION ettt ettt sttt ettt st 363
15.2. REQUITEIMEIIES ... coutintieiieieriteieete ettt ettt sttt eit ettt e e sbe et e bt sbt et sbeeste bt sbeeaesbeennens 363
15.3. Getting The SOUICTE......covueiiiiiriieieieetee ettt ettt ettt s 365
15.4. UPZLAQINZ c..vontivieniiieeienieeteete ettt ettt et s ettt et sb et sbeeaesaeeanens 365
15.5. Installation ProCedure.............covevieririiniiiiinienirtceecctcnecece sttt 366
15.6. POSt-INStallation SETUP......cccveriiiriierieriieiteterie ettt sttt steesete et ebeeseteebeenseesens 376
15.6.1. Shared LiDIariescoccecuerereerienirieniineeienieeteniesit ettt 377
15.6.2. Environment Variables........c.cccoererieriinienienienienenieieniceeesieeeenie e 377

15.7. Supported PIAtFOTISoovuieiiiiiieiieiece ettt st e 378
15.8. Platform-SPpecific INOLES......ceviiiiiiiierieitteieeite ettt et et s eaeees 379
I5.8.1. ALX ettt et st e 379
I5.8.1.1. GCC ISSUES «..cnvenveirenrieieeieeitetesieetete ettt ettt see e ennesaeennens 379

15.8.1.2. Unix-domain sockets BroKen...........cocceceeverveenieneenieninieenineeneneenens 380

15.8.1.3. Internet address ISSUEScoceevuereeieniieieniirieienieerenie et eneenesieeenens 380

15.8.1.4. Memory management............ccceeeeverreeceeruereenuenseenenseeseenseeeenneseenens 381

References and reSOUICES.co.uivuiriierierierieeniterite sttt 382

I5.8.2. CYGWIN..ouiiiiiieiiiieeeeee ettt et st s 382
I5.8.3. HP-UX ..ottt ettt ettt sttt e e eneenaesneeneens 383
I5.8.4 TRIX ..ottt ettt ettt ettt ae et et e s s et esbe e st e steeneeaesneeneens 384
15.8.5. MINGW/Native WINAOWSeoevviiriiiriiiiieniiinienieeieeeite sttt siee st reeseee e 384
15.8.6. SCO OpenServer and SCO UnixWare.........cocceevuervienieniiineenienieeeeneeneene 385
15.8.6.1. SKUNKWALEcoviiiiiiiieeiieteeeiete sttt ettt 385

15.8.6.2. GNU MaKE ...ttt 385

15.8.6.3. REAALINE......oouieiieiieieiteeeee et 385

15.8.6.4. Using the UDK 0n OpenServer...........cccevueeeeneneenenenienieeeenieeeene 386

15.8.6.5. Reading the PostgreSQL man pagescccceeuereerenereenieneenieneene. 386

15.8.6.6. C99 Issues with the 7.1.1b Feature Supplementccccceceevenennnee 386

15.8.6.7. Threading on UnixXWareccoceevueriirieninienenieienieeeene e 386

15.8.7. SOLATTS .ttt sttt et sttt ettt saee b sbeeneens 386
15.8.7.1. ReqUIred tOOIScccuerueriiriiriieieniieieieetee ettt s 387

15.8.7.2. Problems with OpenSSLcccooiviiiiiiiiniiniieeeeeseeeeee e 387

15.8.7.3. configure complains about a failed test program............ccccceecverueennnen. 387

15.8.7.4. 64-bit build sometimes Crashesccccceerveerenieiininceniniencneenens 387

15.8.7.5. Compiling for optimal performance............ccceceeveerienieeeneeneeneennnen. 388

15.8.7.6. Using DTrace for tracing PostgreSQLcccceeviiriieniinneenieniennen. 388

16. Installation from Source Code on WINAOWScccocvevuirieiiiniieienineenenecrene et 389
16.1. Building with Visual C++ or the Platform SDKcccocoiiiiniiiiniiicceee 389
16.1.1. REQUITEIMENLSeevieiieniieiieiieieeie ettt ettt et enesaeeanens 390
16.1.2. Special considerations for 64-bit Windowsccccceevieienieicniniencneenns 391
16.1.3. BUIIAING ..ottt ettt sttt ettt 391
16.1.4. Cleaning and inStallingccccooiiiiiiiiiiiiiiiee e 392
16.1.5. Running the regression LESLSc..eueirirrerieriereeieenerieneeeeeeeereeresresseneeneeneenes 392
16.1.6. Building the dOCUMENtALION......cccectruiruirierienieieieene ettt 392

16.2. Building libpq with Visual C++ or Borland CH+.....ccccooivinieniniciininninciciceeenns 393
16.2.1. Generated fIleScoeiuiriiriieieie et 394

17. Server Setup and OPETALIONcceeuerieieirirenieieeetee sttt e s s eeesee e saessessesneneenens 395
17.1. The PostgreSQL USEr ACCOUNLcc.cevviiiiiriiriiiieeeeniee ettt 395
17.2. Creating a Database CIUSLETccuevuirieriiiieienieeieeeeete ettt 395
17.2.1. Network File SYStEIMS ...cc.ceouiruieriiriiiienieriteienieetesie ettt 396

17.3. Starting the Database SEIVET..........ccccvcieriiiirieniiienieeeteseeterestee et 397
17.3.1. Server Start-up Failurescoccoveivieniriiiiniiienceteeseeeeeee e 398
17.3.2. Client Connection Problemscccoeevieviiiinininincnciiieieeeeeceeeeee, 399

17.4. Managing Kernel RESOUICES..........coerieriiriiieniiieiinieetenieeeesesteeseete et 399
17.4.1. Shared Memory and Semaphoresccceevverieerieenieniesieenieeneee e esieeniee e 400
17.4.2. RESOUICE LIMILSeouviiiriiiiiniieieniieteieeicetenieetenie sttt ettt 405
17.4.3. Linux Memory OVErCOMIMIL........cceeueriieriierienieeieenieeneesreesieesseeseneensesnseennns 406

17.5. Shutting DOWN the SEIVET......coiciiiriiiiiiiiieieeeeee ettt ettt st e e saeenaees 407
17.6. Preventing Server SPOOTINGc.eovuieriiiiiiriieiieiie ettt ettt st et bee st eabees 408
17.7. ENCIYPLION OPLONS.c..eiiuiieiieriieiiieitesitesiteeieesiee sttt ebeesteesitesbeebeesbeessbesaseenbeesasesasesnseas 409
17.8. Secure TCP/IP Connections With SSLcccccccoiiiiniiiininiiieccceeeeeeen 410
17.8.1. Using client CErtifICAtES......evviiriierieriiiiieniiesie ettt st ettt e saeesaneens 411
17.8.2. SSL Server File USAZecocueiiiiriiniiiiieiteeieeie ettt ettt et 411
17.8.3. Creating a Self-Signed Certificatecoceevvierriiinieniieniiieierierieeeerieeeeene 412

17.9. Secure TCP/IP Connections with SSH Tunnelscccccocceveniniinininiininicncneenns 412
18. Server CONfIGUIATIONcceeiieiieieiieeeeeeet ettt st a e et ene s eanens 414
18.1. Setting Parametersc..cocveiiriieiiiriiiieie ettt et 414
18.2. FALE LIOCAIONS ..ttt ettt sttt ettt ettt st e sbe e st et et e st e e e e b e nae 415
18.3. Connections and AUthentiCatioN........c...eovveereeriirieirienee ettt 416
18.3.1. Connection SELHNEScccecuieiiiiiriiiieiiiieieee ettt s 416
18.3.2. Security and AuthentiCation...........c.ceceeververierieininiereniereieeeeereseseeeeeneenes 419

18.4. ResoUrce CONSUMPLION......c..ciiuietieieiieiieteeteeiesteententeeteetesteeeesaesseentesbeensesseeneensesseeneans 420
T84, 1. IMIBIMOTY ..ottt ettt ettt st ettt et e sbeesat e e b e bt e naaeeas 420
18.4.2. Kernel Resource USage......c.c.covueerieriiiiiiiniinienieeieeseestt et 422
18.4.3. Cost-Based Vacuum Delayccccooeieriiiinieienieieeeeeieee e 423
18.4.4. Back@round WIIter........cccueiuirieriiriiiienieeiteieet ettt 424
18.4.5. Asynchronous Behavior...........c.cooceeviiiiiiiiiniiieniiieeseeeeee e 425

18.5. WIite ARead LOZ ...oviiiiiiiiieiieee ettt st s 425
I8.5. 1. SEUNES ..ottt ettt ettt ettt ettt et be ettt e st et saeebesbeennens 425

Xi

18.5.2. CRECKPOINES. ..cuvteruieriiietierieeteetee ettt e st e st e st e bt e sitesabeebeesaeesasesnbeenseasanesns 428

18.5.3. ATCHIVIIIZ 1evvtiiiieeiieeieette ettt ettt st ettt sttt e st e st s beesaeesaneeas 429
18.5.4. Streaming RepliCAtioN........cecuiiiiierieriiiiieniieeieeeeteste sttt et 429
18.5.5. Standby SETVETScccueeiuiiriieiieiieieete ettt sttt ettt e be e e 430

18.6. QUETY PIANNINGeiiiiiiiiiiiiiiieeieeitete ettt st sttt st es 431
18.6.1. Planner Method Configuration...........c..ceccecueeeevienereenieneesienieeeeeeenreseenens 431
18.6.2. Planner Cost CONSLANLSeeverrteeriierieriieniienieeieenitestesateesbeesseesaeeebeesseesaeeens 432
18.6.3. Genetic QUEry OPtIMIZETccceruieierierieiiniieienie ettt saeeenens 433
18.6.4. Other Planner OPLions...........cccccerieiierierieiienieiene et enens 434

18.7. Error Reporting and LOZZINGcc.cocviviiiiiiiiiiiiiiieiceeceeeeteceeee e 436
18.7.1. WHere TO LOZoviiiiiiiiieiiee e 436
18.7.2. WHen TO LOZ .eeeeieiieeeeeeeeteeet ettt 438
18.7.3. WHat TO LLOZ ..ottt s s 440
18.7.4. Using CSV-Format Log OUtpuLcceeieiuiiieienieeierieeieee e 443

18.8. RUN-TIME SEAISTICS ..uviervreeereeiieiiiesieeiiesteeseesteeteesteesteeesseesseesseesssaesseesseesssessseensesssns 445
18.8.1. Query and Index StatisticS COIIECLOLccuevuieieririeieriieereeee e 445
18.8.2. Statistics MONMILOTINEZ ... ecuveutieuieierieeienteeiteie et ete sttt sttt eite e seeeaesbeeneens 446

18.9. AUtOMAIC VACUUIMINGevtiniiiieiiiiieitete ittt ettt ettt et sbt ettt et saeenaesbeeneens 446
18.10. Client Connection Defaultscoceririirieniiiininieeseeeseee et 448
18.10.1. Statement Behavior.........cc.oeveviiiiiieniniiieeecteee e 448
18.10.2. Locale and FOrmattingcccccoceevierierieniininiienenienienieeienieetenie e 450
18.10.3. Other Defaulls.......cc.coeeiiiiiiiiiiriiienicrteeeese et 452
18.11. LOCK MaNQ@emMENLcovueruieiiniieiiiieiteieiieetenteeit ettt sttt sttt sbeeae e ennens 453
18.12. Version and Platform CompatibDilitycccceeeveerieereenieiiieieeniesieeieesiee e eie e 454
18.12.1. Previous PostgreSQL VErSiONSccceevveerierieeiiienieniesieenieeniee e eieenseenens 454
18.12.2. Platform and Client Compatibility.........ccceeevervueriierrieniesieericenee e 455
18.13. PreSet OPLiONS. . c.eeeuieriieriieriieeieenitenitesiteeteesteesiteebeesteesstesbeeseebeessbesnseensaesasesnsesnseas 456
18.14. CusStomiZed OPHOMSeevuieriieriiieiieniesteeieerieesite et esteesitesbeebeesbtessbessbeesbeesasesasesnseas 457
18.15. DeVElOPET OPLONS ...ceuvieiieiieeiiieitenite st eteesie e st et esteesttesbeebeesbeesabesabeebeesasesasesnseas 458
18.16. SNOTt OPLIONS ...couviieiieeiiieiieniie ettt sttt ettt et e bt esbtesbeebe e bt e sabesabeenbeesatesasesnseas 461
19. Client AUThENTICAIONcc.eecuiriirriiriirieieritet ettt ettt st een et eaee et saeennesaeennens 462
19.1. The pg_hba . CoONnE fIl€ ccoiriiiiieiiiiie ettt eetae e e eeaneeas 462
19.2. USET NAIME INAPS .uvvevrerurieiieniieriteesteenitesiteesteesteessteeseesseesseesseesseesseesssesaseeseesssesssessses 467
19.3. Authentication MEtROAScccueiiiiiriiriiiiietere et 468
19.3.1. Trust aUtheNtCAtION.ccoverieeiieniierte ettt ettt ettt st e s 469
19.3.2. Password authentiCation...........c.eevieriirrieenienienieeieeste st ere et site e e s 469
19.3.3. GSSAPI authentiCationcc..cevueerieriiriiieniierie ettt sttt 469
19.3.4. SSPI authentiCationccccueeueriiiinieniieieeiteete ettt st et 470
19.3.5. Kerberos authentiCationcoocueeeerrieenienieniieiniiereenieeieesiee e 471
19.3.6. Ident-based authentiCationccceeervieeriieeriee et e 472
19.3.6.1. Ident Authentication over TCP/IP...........cccceovveviiiciieiieie e, 473

19.3.6.2. Ident Authentication over Local SOCKetsccceevureviierierirerieeneenne, 473

19.3.7. LDAP QuthentiCatiON........cueecueertierieeieerrieneesieeereeseesseeseesseesseesssesssessseessnenns 473
19.3.8. RADIUS authentiCationccceerveeieeriienieeieeirieseesseereesseesseessseesseesseessnenns 475
19.3.9. Certificate aUthenNtiCAtIONcvevieeieeitierieeieeteeseeete et eieeeeeeeveereesaeessneens 475
19.3.10. PAM authentiCaAtION.ccueecveeriierreereetierreereereeseeessseeseesseesseesssessseesseessnenns 476

19.4. Authentication Problemsc.cecueririeriiiireneeteeee ettt 476
20. Database Roles and PrivIIEZESccccoueeieriirieriiniiienieniteiesieetenie ettt s 478

Xii

20.1. Database ROLESccuvveiiieiiiiieeeerieee ettt eetae e e eete e e eetareeeeeetareeeeeerareeeeenans 478

20.2. ROl ALIDULES.cueviiiiiiiiiiiiicricccee e e 479
20.3. PLIVIIEEES ..ottt sttt ettt ettt s e st be e bt e st et e bt e s b e eateeabeas 480
20.4. ROIE MEMDETSHIP ...ecuveiiiiiiiiiiiiieiieee ettt ettt ettt sttt et et eabeas 481
20.5. Function and TrigZer SECUTIILYcevverieriiiiriienienie ettt ettt et e 482
21. Managing Databasescceeeeruiriiieniinieieneeienit sttt ettt et et 484
211 OVETVIBW .ottt ettt et sttt s e st st e bt e s bt s bt e bt e bt e sabeeabe e bt e sabesateeabeas 484
21.2. Creating @ Databasecc.covevieiiieiiniieieieeeeeee e s 484
21.3. Template Databasesccccocveviirieiiniieiiiieeeereetete et 485
21.4. Database Configurationc..cocecueruieiiiriinienieniieieteeeeee et 486
21.5. Destroying a Databaseccccvuiiiiiiiiiiiiniiiieeieeeeee e e 487
21.6. TADIESPACESeeuveeiiieiieeieeriteete ettt ettt ettt sttt sttt ettt be s 487
2 e Yoz 1121 i o) HO USROS PRRSRRRRRRRRIN 490
22.1. L0CAle SUPPOIT......oiuiiiiiiiiiiiieieitiee et s 490
22. 1. 1. OVEIVIEW ..ottt ettt sttt ettt b et sae et be et e e bt e st e et eaeeaesaeeneens 490
22.1.2. BERAVIOT ..ottt ettt st s 491
22.1.3. PIODIEINS .cuviiiiiiiieieeite ettt ettt st e 492

22.2. Character SEt SUPPOIL......ccueruteriertieieniieiente ettt ettt te sttt e st sbeete bt ssteneesaeenaesbeennens 492
22.2.1. Supported Character SELS........ccoererrieriirieniiniieieneeterie sttt eee e sieeeens 493
22.2.2. Setting the Character Sel.........ccoeieerieririeniiniieienieetenie sttt see e sieeaeens 495
22.2.3. Automatic Character Set Conversion Between Server and Client.................. 496
22.2.4. Further REadingcoccociiviiiiiiiiiiiinintciesceteseeeestee et 499

23. Routine Database Maintenance Tasks..........ccccceviririniiieniiniiiniiiiecccce e 500
23.1. ROUINE VACUUIMINGeoveemiiiienieiieiienieeitente sttt et ettt et e e sbeesnesbe st et sseenaesbeennens 500
23.1.1. Vacuuming BasiCS......cccerueriirriieiiienieeiieitesteete ettt st eteesee e esbeenaee e 500
23.1.2. Recovering DisK SPaCEcccueevuieiiirieeiieiiecieeie ettt st 501
23.1.3. Updating PIanner StatiStiCScerverruerrieeriierierieeieeneeneesreenieesieesneeseenseesens 502
23.1.4. Preventing Transaction ID Wraparound Failures............cccoooeevcveviiiininniennnnns 503
23.1.5. The Autovacuum Daemonc.ccecuererieriinieiineeieneneeteneeeenie e sieennens 505

23.2. ROUtINEG REINAEKXINGeouvieiiieiiiiiieiieeieeit ettt ettt sttt st esaaesaeeebeas 506
23.3. Log File MaINtENANCE.......cceevieriieiieniieeieeitesite sttt et e st te ettt esabeebeebeesabesaseenbeas 507
24, Backup and RESTOTEeeiuieriiiiiiiiieiieeie ettt ettt ettt s et sate e bt e satesatesbeesaeesaneens 509
24.1. SQL DUM......ooviiiiiiiiiiiiiiice e s 509
24.1.1. Restoring the dumpcccccivvieriiiieiiniinieieeeeeeeceere e e 510
24.1.2. Using pg_dumpall......c..ccccooiriiiiiiiiininieieneeteseeeere et 510
24.1.3. Handling large databasesc..cccceceriieiiiiinieiiinieeeeneeteeieeeeie e e 511

24.2. File System Level BaCKUPcc.cocoeiiiiiiiiiiiiiiiccece et 512
24.3. Continuous Archiving and Point-In-Time Recovery (PITR)ccoceiiniininnnn, 513
24.3.1. Setting up WAL archiving...........cccccceiiiiiiiiniiiinieeeneeieeeeee e 514
24.3.2. Making a Base BaCKUDcoceeviiiiiiiiiiiiiieeeceeceeeeetes e 516
24.3.3. Recovering using a Continuous Archive Backupcccooenieiiniiiininnenn. 518
24.3.4. TIMELINES ...c.veeueeieeieeteet ettt sttt ettt ettt e st sbe e e b et e st eaeeeesaeeneans 520
24.3.5. Tips and EXampIescccuevieieiiiiiieiieieieeee sttt 521
24.3.5.1. Standalone hot backupsccceeeerueriiriienieieneseeesieeee e 521

24.3.5.2. archive_command SCIIPLS ...cccereerreriierieniiniieniesieeee st eiee e see e 522

24.3.6. CAVEALS ...ueenviiieteeitetest ettt ettt sttt b et e bbbt et e st s bt et bt et et bt e besbeeneen 522

24.4. Migration Between Releasescccoieiiriiieniiiiiiniieee et 523
24.4.1. Migrating data via pg_dUmP.......c.cceceririiriiniiiineeeestee et e 524

Xiii

24.4.2. Other data migration MEthOdS.........cocveeiiiiriiriieriiierieeteee et 525

25. High Availability, Load Balancing, and Replication............cceceevueenieniieriieenienienieeieeseeseene 526
25.1. Comparison of different SOIULIONScccueevvierieriiiriierienie ettt 526

25.2. Log-Shipping Standby SETVETS.........cecueroiiiriierienieiieertesite ettt esiee e ese et e e eeeeiees 530
25.2.1. PIANNING ..ttt ettt ettt et et st e be e e st e 530

25.2.2. Standby Server OPErationc.ccecuereeeerienieerueneenienieneerenteeeenneeeenesaeennens 531

25.2.3. Preparing the Master for Standby Serversc.ccoccevereeiieninicniniencncenns 531

25.2.4. Setting Up a Standby SEIVercccccoieiiiirieiiinieieeneeteeeeeie e 531

25.2.5. Streaming RepliCation...........ccccouirieiiiniiiiiiinieiene et 532

25.2.5.1. AUthentiCaAtIONcccueeruieriiiiieieenite ettt ettt s 533

25.2.5.2. MONIEOTING.....c.viiiiiiiiieieniieieie ettt ettt 534

253 FATlOVET ..ttt ettt sttt et sttt et es 534

25.4. Alternative method for 10g ShIPPING......cccoeeieiiiieiirieee e 535
25.4.1. IMPLEMENTATION «..uveiiietieiieieetceie ettt ettt esbe st e et e e sae et eneesaeeneens 536

25.4.2. Record-based Log Shipping.......ccocceeuerueeieniiniieieneeiesesiceie st 536

25.5. HOt StANADY ...ttt ettt bttt st 537
25.5.1. USEI"S OVEIVIEWveiuietieiieiieiieiesicete it eitete et etesae et e sbesbtetesbeeseenaesaeesesbeeneens 537

25.5.2. Handling qUery CONTIICEScoeeruiriiieniieiieiieicete ettt 539

25.5.3. AdmInistrator’s OVEIVIEWc..ccueveuiruiniirienieieiieiinie ettt sseeeeeneenes 541

25.5.4. Hot Standby Parameter Reference...........cccoeeeviniiieniniencninniincicec e 543

25.5.5. CAVEALS ...veiiiiieicieeeiteeee ettt et 543

26. ReCOVETY CONFIGUIATIONeeutiiieiiiiiiiieieetieieeteete sttt sttt et ettt et st be bt et b eaesbeennens 545
26.1. ArChive rECOVEIY SELHINES ...eouveiertiriiiniiriientinteie et ettt eiee st sbeeste st st et sbeenaesreennens 545

26.2. RECOVETY target SEINES ...cverueeieriieiiniieiteteniteie st eitenteette st eteetesbeesne st st e st saeenaesveennens 546

26.3. Standby SEIVET SELLITIZS c.veevuverierieeriierieeieerteestesiteeteesieesstesbeesseesseesnseesseeseesssesssessses 546

27. Monitoring Database ACHVILYc.eerieriteriienieeniesteeritesteesteeteesteestesseeseesseessesnsesnsesssaesssenns 548
27.1. Standard Unix TOOISc..ccueoiiiiiriiniiiiiiiciciceccer e 548

27.2. The Statistics COIECTOT.ccoiiiriiiiiiieieieie e 549
27.2.1. Statistics Collection CONfigUIationcccueevueeriienieriieriieenienee st eieesee e 549

27.2.2. Viewing Collected StatiStICScevvverruerrieerieriieriienienteeieesieestesiteesieesieeseneens 549

27.3. VIBWINE LLOCKS c..eeiiieiieeiiesiteeteett ettt ettt st sttt ettt et e st eeateeabeas 558

27.4. DYNAMIC TTACINE ...eeeuveeiieriieeieeieeniteete ettt ettt ettt e sttt e et esbeesabeebe e beesabesneeeabeas 558
27.4.1. Compiling for Dynamic Tracing.........ccccceeveeiierriienieriieniieenieeseesieeieeseeseeens 558

27.4.2. BUIIt-I PrODES ...coveiiiiiieiiiiieiccreeeeeeecteeeestete e e e 559

27.4.3. USING PrODEScoveiieiiiiieiiiiieiece ettt sttt et s 567

27.4.4. Defining New Probesc.ccceviiiiiiiiiiiiiicieeeeeseeteeeeeeie e 567

28. Monitoring DisK USAZEcc.eeuiiiiriiiiiiiieiieeeiere ettt st s e 570
28.1. Determining DisKk USAZEcccouieiiiiiiiiiiiiiiieiicieieeie et e 570

28.2. DiSK FUIl FAIIUTEccueiiiiiiiieiieeiteeet ettt ettt 571

29. Reliability and the Write-Ahead Log........cocoueiriiininiiicieieenenere e 572
29.1. REHADIIILY ..eveuveuieiiiiitetetceeeee ettt sttt et st 572

29.2. Write-Ahead Logging (WAL)cccoueriiiieiniiiniencecieercnttrecreeeeeese e 573

29.3. ASynchronous COMIMIL.......cccectririnierierieieieinienenteeeetee ettt sae s s eae e 574

29.4. WAL CONfIGUIALION ...c.veuveiieiieiiiiiriinteteteteitetesie sttt sttt s 575

29.5. WAL INEEINALS ...cuvieuiiiieiieieitetest ettt sttt ettt st sb ettt e st saeeneesbeennens 578

30. REGIESSION TS ..uveueintieiieieitieiest ettt ettt sttt ettt ettt e e sb et e st sb e et esbe e st e et satenbe s bt eneenbeeaeenee 579
30.1. RUNNING the TESESveviriieiiriieieriieteieetete sttt ettt s sae b enaens 579

30.2. Test EValUALIONc.couiiiiiieiiieiiiiitiicieeeeetete ettt s e 581

Xiv

30.2.1. Error message differences.........covverieriieniienieniicieetese et 581

30.2.2. Locale differences........coceririenienieieniinieieneeienieetereseeeesee e 581
30.2.3. Date and time differencescocecvevirvieriinieneninicieeececcee e 582
30.2.4. Floating-point differencescoouevieriiiiiienieniiiieeeee et 582
30.2.5. Row ordering differences..........covierieriiiinienieniiiieeeee et 582
30.2.6. Insufficient Stack depthcoceeriiiiiiiiiiiiiiie e 583
30.2.7. The “random’™ LEST.....cceertiruerrieeniierieeieerieeste et et et e site st beesbeesateeaeeneeesae 583

30.3. Variant Comparison FIlescccociiiiiiiiiiiiiiiiciicce e 583
30.4. Test Coverage EXamination..........ccceeuieiieriinienienieieniieeeee e ene e s enens 584
IV. Client Interfaces 586
R0 B 110] oo [G 1) o 2SRRI 588
31.1. Database Connection Control FUNCtioNSccccecuiiieieninienieiieesceieie e 588
31.2. Connection Status FUNCLIONScccueiuiiiiriiieieiieeee e e 597
31.3. Command Execution FUNCHONScccecieriiiiniiiiiiiieeee e 600
31.3.1. Main FUNCHONS ..c..eeiiiiiieiiiiiiieiesiceet ettt 600
31.3.2. Retrieving Query Result Informationccccevevieneneenienennenciieienceene 607
31.3.3. Retrieving Other Result Informationcecceverienininnencnnenciieeneene 611
31.3.4. Escaping Strings for Inclusion in SQL Commands............ccecceveererierienennene 612

31.4. Asynchronous Command ProCessingccecereeierierieninieneneeienieneenieseeneesieenens 615
31.5. Cancelling QUeries in PrOGIEsScccociiririinierieiiniieieicecee ettt 618
31.6. The Fast-Path INterface..........ccocevuieiiriiniiiniiiiicniieieietee et 619
31.7. Asynchronous NOtICAIONcevieruierieriieieerte sttt ettt et e saeebe e e e seneenseeneees 620
31.8. Functions Associated with the COPY Commandccoceeveeneneriienenieeninreeneneenens 621
31.8.1. Functions for Sending COPY Data........c.cccceevieriirniienienieeiieieenee st eieeniee s 622
31.8.2. Functions for Receiving COPY Data........ccceevieviiiiienienieiiieieenee st 623
31.8.3. Obsolete Functions fOr COPYccceciiririeninieneniinicienceicnie e 624

31.9. Control FUNCHONScc.eocueriirieieniieiiieetete sttt ettt s s ennens 626
31.10. Miscellaneous FUNCHIONSc..coceeuiriirieniirienienieieieeeete ettt saee e e eanens 627
31.11. NOtICE PrOCESSING ...uveeuiieiiieiieiiteiteeie sttt sttt ettt sttt et e st e be e bt e sabesaseeabees 629
3112, EVENE SYSTEIM c.eeiiieiiieiieiiieeite et et site sttt e sate st ebeettesatesabe e bt esbeesaseenbeebeesasesasesaseas 630
31.12.1. EVENE TYPES .ttt ettt ettt et et sttt e st e bee e 630
31.12.2. Event Callback Procedure...........cccceievieriirirneniniiiinicieneceeeeeeeseeeenne 632
31.12.3. Event Support FUNCHONSc..coiiiiiiiiiiiiiieieeeceecee e 633
31.12.4. Event EXampIecccoociiiiiiiiiiiieicicic e 634
31.13. Environment Variablesccocceiiiriiriiiiniiiieniiiieeeeste ettt 637
31.14. The PassWOrd FIlecoooveeiiiiiiiiiiieeiieeteseeeee ettt st 638
31.15. The Connection Service Filecooiiiiiiiiiiiiniiiiceeeet e 639
31.16. LDAP Lookup of Connection Parameters.............ccecuevereruinrenenieneneneneneneeeeennene 639
3117, SSL SUPPOTL.cntiiiiieieiteeeiteeteet ettt sttt ettt ettt et sttt e bt st e bt e bt e sanesaeeeanees 640
31.17.1. Certificate VerifiCation...........cceeueerieriieierieeiieierteee ettt 640
31.17.2. Clent COrtifICALES ...co.eeiiruiriieieetieiiestt ettt ettt st 641
31.17.3. Protection provided in different modes...........cccceeeverereenenenneninieieseene 641
31.17.4. SSL File USAZE ...ccuvieuieiieiiiiieieeitetett ettt ettt 643
31.17.5. SSL library initialiZation.......c..cceeevertieierienieienieeeteieeeeee et 644
31.18. Behavior in Threaded Programs...........ccoccoceeveiirieniniieniiceiesceeeeeeeie e 645
31.19. Building libpq Programs..........cc.cecueeeriirinieneniiienieeeie ettt 645
31.20. EXample Programs........ccoccoeereriieieninienieneee ettt sttt s nae e 646

XV

32, LarZ8 ODJECLS ..eeuvieiiieiieiieeittetteite sttt et et e sttt e bt et e s bt e sabe e bt e satesabe e beesatesabeenbeenstesateebeensaenaneea 656

321, INErOAUCTION ..ttt s s 656
32.2. Implementation FEAtUTEScocueeriiiriiiiiiiiieieeie ettt st e 656
32.3. Client INterfaces.........cccocveiiiiiiiniiniiiiiciic e 656
32.3.1. Creating a Large ObJECt......c.eovueiiiirieriieiienieeee ettt 656
32.3.2. Importing a Large ODbJect........cceoiecieriirieniinieeneeicreeeceeee e 657
32.3.3. Exporting a Large ODbJect........cceoieciiriieieniinieienenieieeeeeee e 658
32.3.4. Opening an Existing Large ODJeCt..........ccceoievienirieiiinieicnieeeceeeeseeeee 658
32.3.5. Writing Data to a Large Object.........cccoecevirieiieniniiiinicececeeceeeeeeeee 658
32.3.6. Reading Data from a Large Objectccccoceeveiiniiiiniiiiniiccececeee, 659
32.3.7. Seeking in a Large ObJect..........ccccecuiiiiiiiiiiiiiiiicicieeecce e 659
32.3.8. Obtaining the Seek Position of a Large Object.........cccceevveircenirinenienecnnns 659
32.3.9. Truncating a Large ODJECtccccuecuriririinienieieenineneneeeeeeese et 659
32.3.10. Closing a Large Object DeSCIIPLOLccouerueerieriieiieieeieeienie e 660
32.3.11. Removing a Large ODJECTccueeiiriirieriiieiesieeeeeeee e 660

32.4. Server-Side FUNCHONS.c..citiiiit ettt ettt s s 660
32.5. EXamMPle PrOgramccoocoioiiiiiiiiiiiiieiee ettt s s 661
33. ECPG - Embedded SQL N C.....oviuiiiiiiiiiieieicieieene ettt s eneas 667
33.1. THE CONCEPL...ccueetieuiiieeiieieeitete ettt ettt sttt sttt ettt st e st bt et e b e bt et saeenaesbeennens 667
33.2. Connecting to the Database SerVer.........ccocvvieriiiiiiniiienineeeseeeeeteee e 667
33.3. CloSINg @ CONNECTION ..c..eeuuiruieieiieiieniieitentesitete st eite st eitete et estesbeeste b st estesbeenaesbeennens 668
33.4. Running SQL Commands..........ccccecuererieririinienieienieetenie ettt sieenaesieennens 669
33.5. ChoOSING @ CONNECHION.couteieiieiiiieeitetenieetenteeatenteettentesbeesaesbeestesbe st et saeenaesreennens 670
33.6. Using HOSt Variablesc..coceerierieiiniiriinienieienieeieniceitete ettt s 670
33.6.1. OVEIVIEW ..eiiiiiiicieicciteeeee ettt s 671
33.6.2. Declare SECHONS.ccocveuiiiiiiiiiiiicieire ettt 671
33.6.3. Different types of host variablesccceevierieriiiriiienienie sttt 672
33.6.4. SELECT INTO and FETCH INTO ccoooiiviiiiiiiiiiiiiiieniienceienceenceenesene s 673
33.6.5. INICALOLS.ouiiiiiiiiiiiicicc e 673

33.7. Dynamic SQL....ccouiiiiiiierieeie ettt sttt et st st ebeas 674
33.8. PELYPES LIDTATY ..ottt ettt ettt et st ettt eabees 675
33.8.1. ThE NUIMETIC LYPE .euveeurieiieeiiieiieniteste et ette st eit et e sttt st ebeesbeeseteebeeseesae 675
33.8.2. ThE date LYPE...eeruviereerieniieeieeieerite ettt ettt eit ettt e st st e be e bee st ebeeaeesaee 678
33.8.3. The tiMEStAMP LYPC..ccuveerurerieeiieiierieeieenieesite ettt e st e st st beesieesaeeebeeneeesae 682
33.8.4. The INterval LYPEccvevuieiiriiiieieniieietetete et 686
33.8.5. The decimal tyPe.......ccceecveriirieiiniieieieeete et 686
33.8.6. errno values of pEtypeslib.......cc.cocieiiiiiiiiiiiiii 687
33.8.7. Special constants of pgtypeslib.........cccocceviriiiiiiiiiiin e 687

33.9. USING DESCIIPLOT ATEASeevieuiiniiiiiiiieiieie ettt ettt e 688
33.9.1. Named SQL DeSCIIptOr ATEASccceerueruirreruerererrinienienteeeeeeeenreneessesseseneenens 688
33.9.2. SQLDA DESCIIPtOr ATEASccveveureurriiruiriiteienteneeieerentesseseneesesiessessessenseneenens 690
33.10. Informix compatibility MOdE..........cceeveieirininenieieieerenreceeeeeese e 693
33.10.1. Additional LYPES....cveuveueeririirierieieiieitee sttt ettt st 693
33.10.2. Additional/missing embedded SQL statements..........c.cccuecveereruenrenrenneeenens 694
33.10.3. Informix-compatible SQLDA Descriptor Areas...........cecereeeereerueereeneneens 694
33.10.4. Additional fUNCLIONS.couerieriiriieientieitete sttt 697
33.10.5. Additional CONSLANLS.......c.eevirierieieiiirintitetetet ettt st eneas 706
33,11, Error HAndlingc.ooueiieriiieieieeeeee ettt s s 707

xvi

33.11.1. Setting CallbaCKSc.cevieriiiiiieiienieeieeiee ettt st 707

33112, SAICA ettt ettt st e st e b e b saee 709
33.11.3. SQLSTATE VS SQLCODE..c..trteteriieureriereeterieestensenerenensesssenseeseensesmeessensesnenne 710
33.12. PreproCesSSOr QITECHIVES ..c.ueieuiiriieiieniiesit ettt sttt ettt ettt sateebe e bt e saaeeaeeeabeas 713
33.12.1. INCIUAING fIlES....eeeuiiiiiiiiieieeeette ettt st e 713
33.12.2. The #define and #undef dir€Ctivesccceveereiriiienienienieeceree e 713
33.12.3. ifdef, ifndef, else, elif, and endif direCtivesceeeevrveieeeeiiiieeeeeiireeeeee 714
33.13. Processing Embedded SQL Programs..........c..ccccoceviieiiiniinieninceienieeeieeceie s 715
33.14. Library FUNCHONSccceiuiiiiiiiieiiiieice ettt s s 716
1 T B TR 031155 3 4 - SRR 716
34. The Information SCREMA...........cc.eiiiiiieiiie e e re e e tee et eeenseeenseeas 719
7 T N o T o] 1 40 - SRR 719
34.2. Data TYPES ..ot e e e 719
34.3. information_schema_catalog NAME ..ouciieeeeeeirieeeeeierieeeeeeeireeeeeeerereeeeeesrsreeesenns 720
34.4. administrable role aUthOTiZat 10N S coo e eeeeeeeeeeeeaeeeeeaaeeeeeneaeaees 720
R TN o) NI o) o N =Y ot o Y K =Y T OO OO U URR PP UPURURRUPURRRRRINt 720
B B, AT LA DU @S uuiiiiiieietieeeieeeet e e ettt e et e e et e e eete e e et e e etteeeeateeeeateeeataeeeetaaeeteeeeteeeeteeeaareaan 721
34.7. check_constraint_rOULIiNE_USAGE .iuiiiieieeiiiieeeeeiiiireeeeeirreeeeserareeeesessnneesseens 724
3 . CE O COMSE T AITIES teeeeeeeeeeeeeeeeeee e e e e e e e e e e e et et e e e e e e e e e e e e e e e eeeee e aaeaaeeeaaaaaaeaes 724
34.9. COLUMN_dOMAIN_USATE tiitrieerreeeirreeeitreeeiteeeeiseeeateeeeseeeesseeessseesasseesessseasesensseesseeas 725
34.10. COLUMN_PTiViLEgES iiiiiirieeiiieeiieeeitieeeeteeeeiteeeeteeeeseeeeaeeestseeeesseessseessesensseesareeas 725
34,11, COLUMN UG USATC it iiittiieeeiitreeeeeiiteeeeeeeiteeeeeeestareeeeestereeseessseeseesestareeeeensareessnnaes 726
34,12, COLUIMIIS tiietieeiiieeeeteeeeteeesiteeeetreeetteeeteeeeseeesaseeeasreseasesessaeessseeansseesasseesnsesenssseensseeas 727
34.13. conStraint_COLUMN_USATE wrrireeirrrreeeeeiireeeeeiiirrreeeeiiisereeeeesseeseesssaresessssseseesennses 731
34,14, CONStraint _taD e USaGE iiiiiiiiiirieeeeeiireeeeeeeiteeeeeeeitereeeeesrreseeeesareseesnssareeesnnans 732
R 7 BTG N o T w74 o 1= T o o R T =Y 1= Y= SRS PUURRRROTRRRRN 733
34.16. OmMAIN CONSETAINES tiiteeetititeeteeeeeeeeeeeeeeeeeeeetee e eeaeeseeeeeeeeeeeereaaanaaaaeseeseaeeeee 734
34,17, AOMain UL USAGC i iiiitriiieeiiirreeeeeiireeeeeesireeeeeeeitareeeeesteseeeeessseeseeeestareseeseseseeseenans 734
34,18, OMAIIIS tieeurieiiiieetieesiteesitee ettt e eetbeeeteeeebeeesbeeeassesasseeassaaassseeassseesssaeesssaeenssseenssenns 735
34,19, @l emMENt LY DES tierrieeieiirreeeeeeeireeeeeeiteeeeeeeereeeeeeertareeeeertareeeeenaaaeeeeeareaeeeetareeeeaans 738
34,20, EN1AD L A, T O LS ttteeeeeeee et ee e e e e e e e e e ettt —————————————ttetttta———————————————aae 741
34.21. foreign_data_ WrapPer OPLiONS iiiiiirieeeeeiitreeeeeeiitreeeeeeerreeeeeeitareeeeeessnreeeeennns 741
34,22, FOreign_data WIAPPEIS ieiiireeeeeiiirreeeeeiiireeeeeeiitrreeeeeiireeeeeeassreeeeeessseseseesssseeeenssns 741
34,23, foreign._SerVer 0P LONS it eeeeiteee e ettt e e eeete e e e eeettae e e e eetar e e e e eetareeeeeaes 742
R N oY et =R K § oM 1% a7 =% of = B SRR PSP 742
34,05, Ky _COLUMN_US AT cauuteerurrearreearereeasreeaseeessseeassseeasssessssseeessseesssseessssessssesesssesenssens 743
N S o et 1T =S o= SRR 744
34.27. referential CONSTTAINTS wiiiiiiiiiieeeeeeeeeeeeecerreerr e e e e eeeeeeeeeeeesaraaarereeeeeeens 747
34.28. r0le_COLUMN__GIANES tiriieieeeiirreeeeeeiireeeeeeiireeeeeaeiraseeeeaeseseeseasssesseesesssesessesssseessennns 748
34.29. role_ roULiNE_GTaNT S ciiiiiiiiieeeeciiieeeeeeiteeeeeeetteeeeeeetreeeeeeetraeeeeeetareeeeeersaseeeeennes 748
34.30. rOle L able_GIrants cuiiiiiiiiiiieeeeeiiieeeeeeiiteeeeeeetteeeeeeeteseeseaasseeeaesessaseeeeeassaseessanses 749
34.3]. rOle_USAGE_GIANES tirtriirieeeeitieeeeeiiiieeeeeeiteeeeeeetteeeeeeesteseeseaasseseeeeasaseeeeaassaseeeaanses 750
34,32, rOULINE _PIrivVileges ciiiiiiiiiieeeeiiiieeeeeeiteeeeeeittreeeeetteeeeeeetseeeeeeerareeeeanssareeeaannes 751
3.3, L OU L AN S ceittiieeeecctiee e e ettt e e ettt e e e e sttte e e e e et ee e e e eabaeeeeeaabaaeeeeabaaaeeeaanbaaeaeearrareaeaannes 751
34,34, SCREMAT A ceeitrieieeciiiee e e ectieee e eeete e e e e stee e e e e s bee e e e eebaaeeeeaataaeeeeattaeeeeaabaraeeeaarbaraeeaannes 757
3,3 SO U IS uiieiutieeetieeettee ettt e eete e e ettt e e ettt e e eete e e eete e e e teeeeateeeettaeeetaeeeetaaeeeteeeeteeeeateeeaaraaan 758
34.36. SOl _fEATUTES wiiietiieeiieeciteeeetee e et e et e e et e e et eeetteeeeaseeeetseeeetseeeetseesseeesnseeenaseeenareeas 759
34.37. sql_implementation_iNFO .o eeieeeetee e e e et eae e e et e e eaeeeeareaas 760

xvii

34,38, SOL_LANGUAGES certrereeeerirreeeeeiiitreeeeeiiirereeeesiiseeeeeeeitsseeeessssseeeeassreseesessresesensseseesennsns 761

34.39. SOl _PACKAGES teeeetreeeeeeiitreeeeeeeiteeeeeeeireeeeeeetteeeeeeettaaeeeeeetereeeeestrraeeeeeatareeeeeetareeeaeans 761
34,40, SOl P AT S cttreeeeeiiireeeeeeeiteee et eeie e e e e et e e e e et tb— e e e e eeta—eeeeee——reeeeanbrteeeeetartaeeaatareeeeaans 762
3441, SOl Sa Z AN Gurtiiiiiiiitiiee ettt et e et e et e ee e e e et e e e eeatreeeeeetabeeeeeetareeeeaans 762
34,42, SOl _S1Zing PrOFiles ciiiiiiiiieeeeeeiiieeeeeeieee e eecee e e e et e e et e e e eeetare e e e e taaeeeeeans 763
34,43, table_CONSEIAINES tiiiiiiiiiiieiiiiiiiteeie e e et e e e e e e e e e r e e eeeeeeeeeeesesssssssasarareeeeeeeas 763
R 7 3 VI oY NN o b ok v B =Y =Y = DO SRR 764
B S LA LS titiieiiiiie ettt e e e e et e e ettt e e e eeebrteeeeaatbaaeeeeetaaeaeeeetareeeaannes 765
34.46. triggered_Update_COLUMNS tiiiiiieeecererreeesreeessreeessseeessreesssseesseesssesessssessssens 766
R T ok e 1o =8 o= SRR 767
R 7N B PEETTe [N o b ok B B =Y 1Y B RRURR 768
RZ N1 EDETSVall (=) o) ok Male o) o) ol e s £= NSNS SRR 769
34.50. USET_MAPPINIGS tietrrreieeiiriieeeeeiitieeeeeeitteeeeesiteeeeeeebaeeeeeeesteseeeeeassaeeaeeesaseeeeaassaseessanes 770
34.5]. VieW_COLUMN_USAGE tiitriirieeeiirreeeeeiireeeeeeiirteeeeeaasaseeeesasssseesasssssssessssssseseesssssseessnnses 770
34,52, VieW _TOULINE_USAGTE tiriiiiiiiiiieeeeiiiieeeeeeitteeeeeeettreeeeeesteeeeeeesteeeeesesraseseeanssaseesannes 771
34,53, VieW LAl @ USAGC i iiiiiiiieeicitieeeeecciteeeeeecttee e e e eetaeeeeeeataeeeeeabbaeeeeeanbareeeearrareaeaaanes 772
3.5, VAEWS ureeeeeecirieeeeeettee e e e et ee e e e et e e e e e ae e e e e et bae e e e arbaaeeeeartaaaaeaattaaeaeaabaaaeeeaarbaraeeaannes 772
V. Server Programming 774
35. EXtending SQL....c..coiiiiiieieiieest ettt sttt sttt 776
35.1. How ExXtensibility WOTKS........ccccoiiiiiririiniiiiiieriicieseeeencee ettt 776
35.2. The PostgreSQL TYPe SYSIEIM...c..ceuiririiriiriiieniieteieeitete ettt eanens 776
35.2.1. BASE TYPES weeeuvreurieieeiieniieeieeiieesttesteeteesteesieesateesbeesasesstesnseenseesseesnsesnseenseesans 776
35.2.2. COMPOSIE TYPES..eerierieriiirieeiiieniieeieeieesite e steebeesieesitesbeeseesseessseenseenseesans 777
35.2.3. DOMAINS «.enveitiniiieetinieeitenieeitetesie ettt ettt e ettt ettt et sae e e b e 777
35.2.4. PSEUAO-TYPES ..eeerieniieiieriieeieeiteite sttt sttt et st ebeesaeesebeenseeseesene 777
35.2.5. POlymOTPhic TYPES ..eeuvieriiieiiiiieiieeieeieeite sttt sttt st e 777

35.3. User-Defined FUNCHONSc..ccoeiiriiniriiiiiieicnecteteecec ettt 778
35.4. Query Language (SQL) FUNCLIONS ...c...oocuiiriiirieniiiiieiesie ettt 778
35.4.1. SQL Functions on Base TYPESccevueruirriierieriiiiieniiente sttt 779
35.4.2. SQL Functions on Composite TYPEScccceerieriiriiienienierieeiienee e 781
35.4.3. SQL Functions with Parameter Names...........cccceeevveeevivienciieesrieenreeesvee e 784
35.4.4. SQL Functions with Output Parametersccccooveevievieriiinnienieenieeieeeee 784
35.4.5. SQL Functions with Variable Numbers of Arguments..........c.cccccceveecvennennnee. 786
35.4.6. SQL Functions with Default Values for Argumentsc.ccocevirvecienennene. 786
35.4.7. SQL Functions as Table SOUICEScccceevrerciieriieeeiireeiee e eereeeevee e 787
35.4.8. SQL Functions Returning Setsccceeuirieieniiieiienieiene e 788
35.4.9. SQL Functions Returning TABLEc..ccceeuirieiieniinieieneeeesie e 790
35.4.10. Polymorphic SQL Functionsccccceciiiiiininiiiiniiine e 790

35.5. Function OVerloadingcccccevvirinierienienieininienienteeeteeeie sttt 792
35.6. Function Volatility CategOriesceeuerveierirrirereneeieieeniesteereseeeeneereesesiesaessenseneeneene 793
35.7. Procedural Language FUNCLONScc.ccecveiriininenieiiininiesecreceeeeeeese e 794
35.8. Internal FUNCHONScc.eiieiiiieieitceeeeee ettt sttt e 794
35.9. C-Language FUNCLONS.c..cccetririirieieieieiteitsenteeceetet ettt s e 795
35.9.1. Dynamic Loading........cceoeririenienieiiniieiee e 795
35.9.2. Base Types in C-Language FUnctions...........ccoceverienieneenieneniencnieienceeenne 796
35.9.3. Version 0 Calling CONVENLIONSc..cevereerierierrienienienienieeeenieeeeniesieeeeniesaeenee 799
35.9.4. Version 1 Calling CONVENTIONScc.evueeuierierierrienienieienieetenieeeeniesieeeenieseeenee 801

XViii

35.9.5. WIIING COAE...ccuviiiiiiiiiieeieeiteite sttt ettt st e esteebeeaee e 804

35.9.6. Compiling and Linking Dynamically-Loaded Functionscc.cccecueeueene. 805
35.9.7. Extension Building InfrastrucCture.cceeveereiinieenieniienieeienee st 807
35.9.8. Composite-TyPe ATZUMENLScceerieriuirriierienieeieeniesee st esieesieesieeeseesseesae 809
35.9.9. Returning Rows (CompoSite TYPES) ..ccveerveerieriiriieniieniienieeieesiee st 811
35.9.10. RELUINING SELS....cccveiiuiiriiirieiiieitie ettt ettt ettt ettt sttt e s ebe e e e sae 813
35.9.11. Polymorphic Arguments and Return Types........ccccccceeveecininienineicnennnn. 818
35.9.12. Shared Memory and LWLOCKScc.ccceviniriiininiiiiicccceceeeeee 819
35.10. User-Defined AZEIEZALEScc.eevuiriieiiriinieierieeieieeeeee e ae st 820
35.11. User-Defined TYPEScoouiriiiiiiiiiiieiee ettt st 823
35.12. User-Defined OPETators..........cocerueruerierieieirinienienteteeteesieseeeressesseneeneesessesaessenseneeneene 826
35.13. Operator Optimization Information.............cocceveerieriieiene e 827
35.13.1. COMMUTATOR ..ttt sttt ettt et a e st st s e s et sae s b 827
35.13.2. NEGATOR «.euiiuiiiieiiett ettt et st s st sae e 828
35133 RESTRICT weutruirtiteteneenteteetessessententesesuesaesessenteneeutesesaesseseeseenesuesaessensenseneenens 828
35,1314, TOTIN ettt ettt ettt ettt bt et eae e 829
35.13.5. HASHES ittt ettt sttt sa ettt et sa e sttt et be et enea 830
35.13.0. MERGES c.cutiuiriirtiieieteitette sttt st saeae et eae b sae s s s s st saesae s s neneeneas 831
35.14. Interfacing Extensions To INAEXES.cccoeeereririeniinieniiieie et 832
35.14.1. Index Methods and Operator CIasSescocceverierieneerienenieneneerienieeeenne 832
35.14.2. Index Method SErategiesc.ccoeeieririeriinienienienieieeieeeese et 832
35.14.3. Index Method Support ROUINESccccevuiriiieninieniinieienceenceeeseeeeenne 834
35.14.4. AN EXQAMPIE ..cooeviiiiiiiiiiiiieieee et 836
35.14.5. Operator Classes and Operator Families...........cccevvercieriiienienieenieeieenieene 838
35.14.6. System Dependencies on Operator CIasseseevvereereiienieeneenieenieeneeennns 841
35.14.7. Special Features of Operator Classes........cocvevverrieerienieesiieenieeneesieeieenieennns 841
35.15. Using C++ for EXteNSIDIIILYeevveriiiiiiiierienieeieeteste ettt 842
B0, TTIZEETS .eveeuveereenieeeteetterte ettt et e it e sttt st e e bt e s atesab e e bt esseesabeesbeesseesateenseenseesateansaenseesasesnseesaenanenns 844
36.1. Overview of Trigger Behavior.........ccoceviiiiiiiiniiniiiiicteeeeee e 844
36.2. Visibility of Data Changes.........c.covverieriiiiniienienie ettt sttt ettt e sneseeeaees 846
36.3. Writing Trigger FUNCtions in Ccociviiiiiiinieiiiiieeeeste ettt 846
36.4. A Complete Trigger EXample.......ccccoevveriiiniienieniiiiieeenie ettt 849
37. The RULE SYSEIMeeiuiiiiieiiiieiteiteeite ettt ettt ettt et et s e e bt e satesate e bt e satesatesbeesbeesaneeas 853
37.1. The QUETY TTEE.....cccueeiiiieiirieieeiietee ettt st s 853
37.2. Views and the Rule SyStemcccooieiiiiiiiiiiiiiieicccerecreeeeete e 855
37.2.1. How SELECT Rules WOTKccccoiiiriiiiiiiiiieeiceecceeee e 855
37.2.2. View Rules in NON-SELECT Statementscecueevueereeneeriieenieeneeneeeseeeneeennns 860
37.2.3. The Power of Views in PostgreSQLccocoiiiiiiiniiiiicneeeee, 861
37.2.4. Updating @ VIEW.....ccooouiiiiiiiiieiiiiieiet ettt e s 861

37.3. Rules on INSERT, UPDATE, QNd DELETEeeeetteiiitieeeeeeeeeeeeeeeeeeereeeessennnneseseesesaesees 862
37.3.1. How Update Rules WOTKcccooiiriiiiiiiiiiiiiiecceeeeee e 862
37.3.1.1. A First Rule Step by Stepcccoeiererieieneeieeeeeee e 863

37.3.2. Cooperation With VIEWS..........cceiiiiiinieieieiieeiee e 866

37.4. Rules and PrivIIEZEscooiiieieriieiiiieiee ettt s s 873
37.5. Rules and Command StAtUS..........cecuerieieririeneniieienieetenee ettt see b 874
37.6. RUles VEIsuS TIIZEETS ..cc.eeruiruieiiiieiienieeiete sttt ettt eae e 875
38. Procedural LangUagescoeerueriieieniiieie sttt sttt sttt et 878
38.1. Installing Procedural Languagesccoceveererierieniinieneiceie et 878

Xix

39. PL/pgSQL - SQL Procedural LangUageccceeveerieriienienienieenieeneesieesieesieeseesveesieesaneens 881

3.1, OVEIVIBW ..ottt sttt ettt ettt sttt ettt et a e eaeeaesbe e bt eaee st saeenaenueennens 881
39.1.1. Advantages of Using PL/PESQLcooiiiiiiiiiiiieeeeeeeeee e 881
39.1.2. Supported Argument and Result Data TYPeS......cccceeveerieriiiinienierieeieeeeene 882

39.2. Structure of PL/PESQL...ccuiiiiiiiieeeetete ettt sttt e 882

39.3. DECIATAtIONSeiieiieiieiieieeiteteeie ettt ettt ettt et sae et e et saeenesaeennens 884
39.3.1. Declaring Function Parameters.............cccccerievieninieniinieicncceeceereseeeenn 884
30,32, ALIAS ottt et aee 887
39.3.3. COPYING TYPES ..ttt et s 887
39.3.4. ROW TYPES. ..ttt et 888
39.3.5. RECOTA TYPES ..ottt e 888

39,4, EXPIESSIONSutuitintiteteeeuteiteie st sttt et ene et e besae st eseeateaeeae sttt esessenteneebesbesae s enseneeneene 889

39.5. BaSIC StAtEIMEIILS......eetieuieieeiieteetceitesteeite e eeteteste e et e et e eeeaeetesbeeseesbeeseentesneeeesreennens 889
39.5.1. ASSIZIIMENLevitiienienieiieiieiententetet ettt ettt b s eeae et sbe e s s neneenens 889
39.5.2. Executing a Command With No Result..........cccccoviviineneneininininiiceeenns 890
39.5.3. Executing a Query with a Single-Row Resultccccoeoeiivinininincnennnens 891
39.5.4. Executing Dynamic Commandsc.cceecereerierenienieneeniene e 892
39.5.5. Obtaining the Result Status........ccceecueririeriiierenirieeeeee e 895
39.5.6. Doing Nothing At Allcooiieiiiiiiiieee e 896

39.6. CONLIOL STIUCLUIES.....cuveiuieniiiiieienteeiiete ettt ettt ettt saesbe et e b et e st saeenaesbeennens 896
39.6.1. Returning From a FUNCHONccceeciiviiiiiiiiiieicceeecceceeecee 896

39.60.1.1. RETURN ..ottt ettt ettt sttt st s 897
39.6.1.2. RETURN NEXT and RETURN QUERYccceceriruinuerieeeneerennenieseennennenenns 897
39.6.2. CoNAitioNAlSc..eoueeiiriiiiiriiriieiereet ettt 898
39.6.2. 1. TF—THEN ittt sttt st 899
39.6.2.2. IF—THEN=ELSE ..ectriruirieieieieiieestestetetet et s 899
39.6.2.3. IF—THEN=ELSTIF cceoirtiriiieieieiieienteseetetent et 900
39.6.2.4. SIMPIE CASE .eeviriieiiieeierieetenesitetesttete sttt st et sb et saee e e eanens 901
39.6.2.5. Searched CASE.....ceciririirieienieniteteetteteste ettt ettt et 901
39.6.3. SIMPIE LOOPS -.eevvieniiiiieiieeieeteesite sttt ettt st be et e st e eaee e 902
39.6.3.1. LOOP vttt e 902
39.6.3.2. EXIT oottt e 902
39.6.3.3. CONTINUE ...otitiiimiiuiititeieiee sttt s 903
39.6.3.4. WHILE cooouiiiiiiieieieie ettt 903
39.6.3.5. FOR (INLEZET VATIANL)....ccuverrveeieeriieeieeieenieeeieeeeenteesateeareebeesatesaeeensees 904
39.6.4. Looping Through Query Resultsccccocooiiiininiiiiniiieceeeeee 905
39.6.5. Trapping EITOTScc.oouiiiiiiiieieieictetee e 906

30,7 CUTSOTS .ttt ettt ettt ettt e e st e b e s bt e sat e st e e bt e s bt e s bt e bt e bt e sabeeabe e bt e sabeeaeeeabeen 908
39.7.1. Declaring Cursor Variables............cccccieviiiiiiiiiiniiiiieneeee e 908
39.7.2. OPENING CUISOTSveuveureuirrirrinienietenteiteieneeetetesteseeueeressesseseseesesuesaessesenseneesens 909

39.7.2.1. OPEN FOR QUEI Y etteeeureerureeesreesanreesaseeeassseesassesssseesssseessseeesssesssssessns 909
39.7.2.2. OPEN FOR EXECUTE .iecuiruiiuieiieriieietieiesie e s enesneeneesaesaeesae s eanens 909
39.7.2.3. Opening @ Bound CUISOT..........cccoverieieieininiinenieeeeeeneneeeeneeeaene 910
39.7.3. USING CUISOIS...cvirenrenreuierinienienietenteiteiestesesesteseeseesessessesseseenesuesaessesenseneenens 910
39731 FETCH i st s s 910
39.7.3.2. MOVE .ttt ettt ettt ettt sttt et sttt sbe et bt bt e b bt e e st eaeen 911
39.7.3.3. UPDATE/DELETE WHERE CURRENT OF ..cccoviirrerieeereerenrerieeennennenenne 911
39.7.3.4. CLOSE ettt sttt st 912

XX

39.7.3.5. REtUINING CUTSOTS ..eeveererieiieiieniieeiieeiteniieeteeieesieesteeseebeesnesaseenseas 912

39.7.4. Looping Through a Cursor’s Result...........ceeceeriiriiienieniieniieienieeieeeeieee 913

39.8. EITOTS AN IMESSAZES ...eeuveeeieriieriieiieniie st eieesite st eteesitesite s bt ebeesbeesabeebeenbeesasesnsesaseas 914
39.9. TriGZET PIOCEAUIESootiiiiieiiiiiieiieeie ettt ettt ettt sbe e sttt et eabeas 915
39.10. PL/pgSQL Under the HOOdcccuiriiiiiiiiiienieeeeeete ettt 921
39.10.1. Variable SubStIULION......c..cocuevuerieiiiniieieierceeeercteee e e 921
39.10.2. Plan Cachingcc.coieviiriiiieiiiniieieiietete et 923
39.11. Tips for Developing in PL/PESQL.........cociiiiiiiiiiiiiieiei e 925
39.11.1. Handling of Quotation Marks...........cccccciniiiininiiinieceeeee, 926
39.12. Porting from Oracle PL/SQL..........cccoiiiiiii e 927
39.12.1. Porting EXampIescc.cociiiiiiiiiiiiiiiieic e 928
39.12.2. Other Things to Watch FOT........cccccvviiininiiniiiiiiinncccenc e 934
39.12.2.1. Implicit Rollback after EXCEptions..........cccceevveveeruenenenenveceennnenn 934

39.12.2.2. EXECUTE ..utiiiiiieie ittt st s s 934

39.12.2.3. Optimizing PL/pgSQL Functions..........ccccceeeverienveeninienenienvenenenn 934

39.12.3. APPENAIX...tuiriiriiieieieiieiietestere ettt sttt ettt sttt et eaee 935

40. PL/Tcl - Tcl Procedural Language..........cccoeverieieieieuinienienieeeeeene ettt eses e seeneeneenes 938
40. 1. OVEIVIBW ...ttt sttt ettt ettt ettt et b e e et e b et e sbe et e s beebt et e sbeestenbesseenaesbeennens 938
40.2. PL/Tcl Functions and ATZUMENTS.........coeeterierierieniieienienieeteniesitetesieeeeseesseeneesieennens 938
40.3. Data Values in PL/TCL.......ccociiiiiiiiiiiiincceeeeeeseeeeeee et 940
40.4. Global Data in PL/TCLccoociiiiiiiiiiieiiieinerecteeee ettt 940
40.5. Database Access from PL/TCLcccccooiiiiiiiniiiiiiiiiecccene e 940
40.6. Trigger Procedures in PL/TCL.....c..cociiviiiiiiiniiniiiiinecneeencteecetenee e 943
40.7. Modules and the unknown COMMANA.........ccoceriiriiriirieninirieneneeeneetee e e 944
40.8. Tcl Procedure NAMESc.cccovereeriiririenieniienienieetenieeieeste e et sit et sieeseesaesseenaesaeennens 945
41. PL/Perl - Perl Procedural Language...........ccceeveriieniienienieeieeieesiie et s eveesieesve e eneees 946
41.1. PL/Per] Functions and ATZUMENLS.........cccverieriieerieerienieeieenieeneesreesseenseesnresnseenseennns 946
41.2. Data Values in PL/PEIL.........ccccooiiiiiniiiiiiiieienccteccc et 949
41.3. BUilt-in FUNCHOMNS ..c..eoutiiiiiiiiiriieiccctecnteescecte ettt s 949
41.3.1. Database Access from PL/Perl.........ccccoccoveninieiiininiiniiiccnecccecc e 950
41.3.2. Utility functions in PL/PErl..........ccccooiiiiiiiiiiiiiiieiececteeeeeeeee e 953

41.4. Global Values in PL/Per]cccccciviiiiiniiiiiiiiieiiceeeneeeneee et 954
41.5. Trusted and Untrusted PL/Per]ccccoiiiiiiniiiiiiniineccneceereeeeere e 955
41.6. PL/PEIL TIIZZEIS ...eoveeniiieeiieieeiieieeit ettt sttt ettt st et sne s sae s ennens 956
41.7. PL/Per] Under the HOOdcoceiiiiiriiiiiiiieiieeeetee et 958
41.7.1. CONAGUIALIONceivieiiiiieiieieeiieteete ettt et s e s 958
41.7.2. Limitations and Missing Features..............ccccoceciiiniininiininniiccceeenee. 959

42. PL/Python - Python Procedural Language............cc.ccceeirieiiiniiiiinieieiiceeee e 960
42.1. Python 2 vs. Python 3 ..ot 960
42.2. PL/PYthon FUNCHONSc.cotiuiiiiiiiiiieicieiinene sttt ettt sttt s eneenee 961
42.3.DAta VAIULSeeviiiieiieeiteeteet ettt ettt ettt sttt st 963
42.3.1. Data TYPe Mapping.......cccceevevueieieuieiinienieneeteeeeeiestesteseeee et sieseesseneseene e 963
4232, NUIL NOIC...uvvveiiiiiieee et e e e e e e e e e e e e e eeaasaaarerereeaeeas 964
42.3.3. AITAYS, LASES .ottt ettt 964
42.3.4. COMPOSIEE TYPES...eeurruiriiriiiiieieieiieiesentcrectee ettt st 965
42.3.5. Set-Returning FUNCLIONScoviiiiiiiiiiiiiieieiiee et 966

42.4. Sharing DAlcooueiuieiiiiiiieieeieeeet ettt ettt sttt ettt ettt 967
42.5. Anonymous Code BIOCKScceeruiriiieriiiiienicteieeeee sttt e 968

XXi

42.6. TriZEET FUNCLIONSoootieiiiiiiieiieiieeieeie ettt ettt st et et e st e bt e saeeseteenbeeseenaee 968

42.77. DAtADASE ACCESS ..uvveeerieererieiiireeeiireeeitreeiseeeaseeessseessseaesssesaasseesssssesssseessssessssesssssessnsses 969
42.8. ULIILY FUNCLIONS ...c..eeiiieiieeieeiteiteeteet ettt ettt sttt sttt e s e b b 970
42.9. Environment Variablesc.ccecviieiuiieiiiiieniieeeieeesieeesveesereesteeessaeesssaeesssesesssessnnes 970
43. Server Programming INEETTACEcoueriiiiiiiiiiiiiiiectee ettt 972
43.1. Interface FUNCHOMNScoooiuiieiieiiiiie e ettt e et e e e eetre e e e eeetareee e e traeeeeennns 972
N &4 BeT0) 11 1= AR 972

N o B 11T o TSR 974
SPIPUSI .ttt st st 975
SPL_POP e e et et e 976

N & B o) L LSRRI 977

N & B RSP 980
SPL_eXeCUte_WIth_Qr@Sccueeuieieieiiieieeiieiet ettt 981
SPI_PIEPATE ...ttt et e 983
SPI_PIEPATE _CUISOTeeuuiiiiieiieiiteeiteettet ettt ettt ettt st e be e b e e e e b e nae 985
SPI_PIrepare_Paramscccocieiiiiiiiiiiiiiiiei ettt 986
SPI_gEtargCOUNLccuiiiiiiiiiiii e s 987
SPL_gEtargtyPeid.....ccueeuieeieiieieeierie ettt st 988
SPI_iS_CUISOT_PLAN ...ttt s 989
SPI_eXECULE_PIAMetiiiiiiieiiitieiereetee ettt et 990
SPI_execute_plan_with_paramliSt.........c..ceceririeriniineninienieneeeene e 992
SPI_EXECP .t euvteutemtenteeitete ettt ettt ettt a et bttt b et st a e bbbt 993
SPL_CUISOT_OPCIL..c.eitiniiiieitinieeite ettt ettt ettt ettt b ettt e b b esne b eaeenee 994
SPI_cursor_Open_With_argscceecueerieiienieeieeiiieseeeeeeieesteste b eaeeseesaeeseenseesens 996
SPI_cursor_open_with_paramliSt.........ccccceevueeciierierieniiieiienienie e esieeseesve e siee e 998
SPL_CUISOT_fIN ...ttt e et e e e st r et e eeeeeeeesssssnnnaaaans 999

N 34 eI 015 T0) ol (<1 o) 1 DURUT TSRS 1000
SPL_CUISOT_INOVE ...ttt et e e e e e e e e s e s s s s aasbaeeeeeeeeesesessssnnnnaes 1001
SPI_Scroll_cursor_fetCh........cccuiiieiiiiciieece et 1002
SPI_SCIOIl_CUISOT_IMOVEvvieiuiiieeiiieeiiiieeeitieeiteeetteeeereeetaeesreeesaseeesssaeessseeassessssens 1003
SPI_CUISOT_ClOSE.....eiieeiieiiieeeiieeeiee e tee et e eetee e taeeetbeeebaeessbeeesnsaeesasaeesseeensseesnnsens 1004
SPI_SAVEPIAN ...ttt ettt et st et 1005

43.2. Interface SUPPOTt FUNCHIONScooveiriiriiiiiiiienieeieeteet ettt st 1006
SPI_fNAIME....cciiiiieiiieeeee ettt e et e et e et e e ta e e s bt eeensaeessbaeessbeeensseeennneas 1006

N &4 I 110000115 RN 1007
SPIL_GELVALUE ...ttt ettt sttt st 1008
SPI_gEtbINVAlooiiiiiiiiiiieeeeeeee ettt st 1009
SPI_GEILYPE ... e e e e 1010
SPI_GELLYPEIAeeeiieiieiiie ettt sttt st 1011
SPI_GELrEINAIMEeeiiiiiiiiieeieeitee ettt sttt st 1012
SPI_ZENSPNAIME.eeueieiiiiieeieeite ettt ettt sttt e bt st st be e bt e saeeereenee s 1013

43.3. Memory ManaQZEemENLccc.eecueeriterienieeiieniieniteeieesttesitesteesteesiee st ebeesseesaneeseenneens 1014
SPI_PALLOC ...ttt ettt et st bt e e et et 1014
SPL_IEPAIIOC ...ttt ettt et 1016
SPI_PITEE. .ttt sttt sttt e 1017
SPI_COPYLUPIE ...ttt ettt sttt 1018
SPL_ICTUIMTUPLE ...ttt sttt e 1019
SPI_MOAIFYTUPLE ...ttt ettt 1020

xxii

SPI_TEEIUPIE. ...ttt ettt ettt sttt st ebe e 1022

SPI_fretUPLADI.eeeiiiiiieieeiieite ettt sttt st e 1023
SPI_TEEPIAN.....c..tiiiiiiiiie ettt st 1024

43.4. Visibility of Data Changes...........cceevuervieeiiierieniieiienieste ettt s 1025
43.5. EXAMPIES ..ottt ettt ettt sttt st e st eaeeae e 1025
VI. Reference 1029
1. SQL COMMANGS...ccutiiieiiieiiieeciieeeiteeetee et e et e et e e teeeeaeesseeesseeessseeesssasessseesssseesssseesnsseeans 1031
ABORT ... ettt e e e e e e e e et eeeanaeens 1032
ALTER AGGREGATEooooiioeeee ettt ete e ete et eaeeeneeenreeereeeteseaeeeaeenneean 1034
ALTER CONVERSIONooooiiiiiiiecteeeeeee ettt eteeete et eaeeeaeeenaeeeteeetesenreenaeenseean 1036
ALTER DATABASE ...ttt e te ettt e e eereeeteeereeeneeeneean 1038
ALTER DEFAULT PRIVILEGESooootiiiioitieeeeeeeeeeeeee et enee s 1041
ALTER DOMALINooiitietieeee ettt eete et e e et e et e etaeeeteeeaeeeaeeenveeeseeeseeenaeeeseenseeas 1044
ALTER FOREIGN DATA WRAPPERcoooiiioeeeeeeeeeeee e enee 1047
ALTER FUNCTION ...ttt ettt ettt et ete e eeeeeveeeaeeeaeeeveeeneeeseseaeeeneenseean 1049
ALTER GROUP ..ottt ettt ettt et e et e eteeeaeseveeeteeeteeeaeeeaeenneean 1053
ALTER INDEX ..ottt ettt ettt etee et et ete e etteeteeeteeeaeeenveeeteeeseeeereeeseenseeas 1055
ALTER LANGUAGEcoi oottt ettt ettt e eeae e aeeeaeeeneenaee s 1058
ALTER LARGE OBJECTooi ittt ettt ettt et eve et eveeeveeeteeeveeensenaeean 1059
ALTER OPERATORoooitiiitieeieee ettt et eetee et eat et eeveeeaaeeaeeeveenaeetaeeveeeneenseean 1060
ALTER OPERATOR CLASS ...ttt et et eveeeve e tee e eeveeeaee s 1062
ALTER OPERATOR FAMILYccuviitiiitiieieeie ettt ettt et et eve v et eaveeane e 1063
ALTER ROLEcooiitiioiieteectee ettt ettt ettt eve e eaaeetaeeaveeva e taeseveeneeseeas 1067
ALTER SCHEMAooooiiiteiete ettt ettt e e ebeeeaaeetseebeeveeetaeeeveereeneeas 1071
ALTER SEQUENCEcoiiiitiieieeeecieeeeeete ettt et ettt e e eveeeaaesaneeaveeve e taeeeveeneeneeas 1072
ALTER SERVER........ooi ittt ettt et ettt et eva et e abeeva e taeeaveereeneeas 1075
ALTER TABLE ..ottt ettt ettt b ae et eabeebeetaesebeeseenneeas 1077
ALTER TABLESPACEoootiiieeeeeeeee ettt ettt et eae et s v e e v tee s veeveenee s 1087
ALTER TEXT SEARCH CONFIGURATIONccoooviiiiieitieee et e eeeareee e 1089
ALTER TEXT SEARCH DICTIONARY ...ttt 1091
ALTER TEXT SEARCH PARSERovoiiiioieee et 1093
ALTER TEXT SEARCH TEMPLATE ... 1094
ALTER TRIGGERoooiiiiieee e eenaeeenneeen 1095
ALTER TYPE......oo oot ettt te ettt eaae et e eteeetesenveeteenneean 1097
ALTER USER ...ttt e e e e e et e e eneeeeneeeens 1099
ALTER USER MAPPING ..o 1100
ALTER VIEWooiiiiiiiiieeeeee ettt ettt ete et eaeeeaeeenveereeetesenaeenneenneean 1102
ANALYZE ...t e e ettt e e et e et e et e eete e eteeeat e et e e reeeteeereeereenneean 1104
BEGIN ...ttt ettt e et e et e e te e et e etteeteeeaeeeaeeenreeereeeteeereereeereean 1107
CHECKPOINT ..ottt ettt ete e et eeteeeae e et e eveeeaeeeseeesseeseeeseeesseeseenseesseeenseeneenes 1109
CLOSE ..ottt e et e et e et e et e e teeeae e et e eteeteeeaeeeteeteeeteeeareeneenns 1110
CLUSTER ...ttt ettt e et et e e et e e teeeae e et e eteeeteeeaeeeveeseeeteeeaseenneenes 1112
COMMENT ...ttt e ettt e ete e et e et e e eteeeaeeeteeeteeeseeeteseseesseeteeeaseeneenns 1115
COMMIT ...ttt et e et e ete e et e e e teeeaeeeaseeveeseeeaeeeaeetseeteeeaseeneenes 1119
COMMIT PREPARED........cootiiitiieiiete ettt ettt eve et eaeeeveeaeeeteeeaneeneenns 1121
COPY oottt e e e et e e et e et e ete e te e e te e et e ete e teeetteebeeteeteeeareean et 1122
CREATE AGGREGATEc.ooiiiieteeeeeteeeee ettt eete ettt et ettt eeaeeeaeeeteeeaneene e 1132

XXiil

CREATE CAST ...t s 1136

CREATE CONSTRAINT TRIGGERccccccciiiiiiiiiiiiiiiiiiiiieeccces 1141
CREATE CONVERSIONccooiiiiiiiiiiiiiiciciccce s 1143
CREATE DATABASEc.ooiiiiiiiiii e 1145
CREATE DOMAIN......coiiiiiiiiiiii e 1148
CREATE FOREIGN DATA WRAPPER..........cccoiiiiiiiiiectcee e 1151
CREATE FUNCTION ..ottt sttt et 1153
CREATE GROUP ...ttt s e 1161
CREATE INDEX........oootiiiiitii ettt sttt e st 1162
CREATE LANGUAGEc.oooiiiiiiiiieeeeee ettt e 1168
CREATE OPERATORccoiiiiiiiiiiieee e e 1171
CREATE OPERATOR CLASS ... s 1174
CREATE OPERATOR FAMILYcooiiiiiiiiiit e 1177
CREATE ROLE ... e e s 1179
CREATE RULEo e e s 1184
CREATE SCHEMAo s 1187
CREATE SEQUENCEoooiiiiiiiiie e e s 1190
CREATE SERVER ..o s 1194
CREATE TABLE ...ttt sttt s e 1196
CREATE TABLE AS ..ottt sttt s s 1211
CREATE TABLESPACE.......c.coiiiiiiiiicteetee ettt s 1215
CREATE TEXT SEARCH CONFIGURATION........cccoceriiiiiiiiiniinieieeeeeeeee e 1217
CREATE TEXT SEARCH DICTIONARYccoociiiiiiiniiniiieieieieeeieeeeeeeese s 1219
CREATE TEXT SEARCH PARSERcccooiiiiiiiiiiiicicieeeeeeeeeee e 1221
CREATE TEXT SEARCH TEMPLATE.........ccccccoiiiiiiiiiiiiiiniceceeeeee e 1223
CREATE TRIGGER.........ccooiiiiiiiiiiiiiiiectceee e 1225
CREATE TYPE ...t 1229
CREATE USER.......cciiiiiiiiiiiiic sttt s 1237
CREATE USER MAPPING.........ccoociiiiiiiiiiiiiiiciccct e 1238
CREATE VIEW ..ottt s 1240
DEALLOCATE ..ottt e 1243
DECLARE ..o s 1244
DELETE ..ot 1248
DISCARD. ..ot s 1251
DO e e st et st 1253
DROP AGGREGATE.........ootiiiiiiiienteeee ettt ettt et 1255
DROP CAST ...ttt ettt et st 1257
DROP CONVERSION ... oottt sttt e st 1259
DROP DATABASE ...ttt s st 1261
DROP DOMALIN ...ttt ettt s s 1262
DROP FOREIGN DATA WRAPPER ...t 1264
DROP FUNCTION ...ttt ettt e st 1266
DROP GROUP ... 1268
DROP INDEX ...ttt s e 1269
DROP LANGUAGE ..o 1271
DROP OPERATOR ..ot 1273
DROP OPERATOR CLASS ... 1275
DROP OPERATOR FAMILYcouiiiiiiiiiiiiiiinieiceetee ettt s 1277

XXV

DROP OWNEDcoiiiiiiiiiiiiiiiictccee ettt 1279

DROP ROLEcoiiiiiiiiiiiiiiiiinicctceee et s 1281
DROP RULLEoooiiiiiiiiiiiiiinccee e s 1283
DROP SCHEMAoooiiiiiiiiiiiictctceeeee e s 1285
DROP SEQUENCE.......cc.coiiiiiiiiiiiiiiiiicee e 1287
DROP SERVER........cooiiiiiiiiiiiiitccce e 1289
DROP TABLE ...ttt et sttt st st e 1291
DROP TABLESPACEoooiiiiiiitiiet ettt ettt s 1293
DROP TEXT SEARCH CONFIGURATIONcccoociiiiiiniiiieiienieeeeie e 1295
DROP TEXT SEARCH DICTIONARYc.coiiiiiiiiiiieeitcecee e 1297
DROP TEXT SEARCH PARSERccooiiiiiiii e 1299
DROP TEXT SEARCH TEMPLATEcccooiiiiiiiiieicece e 1301
DROP TRIGGERoooiiiiiiii et st 1303
DROP TYPE..... et st 1305
DROP USER ... et s 1307
DROP USER MAPPINGoooiiiiiiiiiiiicie et 1308
DROP VIEW ..o s s 1310
END .o e e 1312
EXECUTE ... e e 1314
EXPLAIN ..o e e e 1316
FETCH ...ttt ettt st 1321
GRANT L.ttt sttt sttt s s aeae 1325
INSERT ..ottt st st 1332
LISTEN L.ttt e 1336
LIOAD ..t 1338
LIOCK .ttt s s 1339
IMOVE. ...ttt 1342
INOTIFY .ttt 1344
PREPAREoooiiiiiiiie et e 1347
PREPARE TRANSACTIONc.coiiiiiiiiiiiiiiiiccetec et 1350
REASSIGN OWNEDccoioiiiiiiiiiiiiiiic s 1352
REINDEX ..ot 1354
RELEASE SAVEPOINTccciiiiiiiiiiiic s 1357
RESET ..ot 1359
REVOKE ...ttt ettt et e st e ne e 1361
ROLLBAGCK ...ttt ettt et st n e st ne s ne s e 1365
ROLLBACK PREPAREDc..cooiiiiiiiitiiieeteetetet ettt s 1367
ROLLBACK TO SAVEPOINTcooiiiiiiiiiiiiiieeet ettt 1368
SAVEPOINT ...ttt e s s et 1370
SELECT ...t st e st 1372
SELECT INTO ...t 1390
ST et e e 1392
SET CONSTRAINTS ... e s 1396
SET ROLEo e e s 1398
SET SESSION AUTHORIZATION.......ccocoiiiiiiiiiiiiiiieie e 1400
SET TRANSACTION ..ot e s 1402
SHOW .ttt sttt sttt s sa e 1404
START TRANSACTION ..ottt ettt s e 1407

XXV

TRUNCATE ..ot 1408

UNLISTEN ...ttt ettt ettt sttt st st ettt saeeaesaeesnenbeeanenteene 1411
UPDATE ...ttt ettt ettt sttt st et ettt st ae st enesbeeenenneene 1413
VACUUM ...ttt ettt st sttt st saeenesbeeaneneene 1417
VALUES ...ttt st st et e n e st st nesbe st ene 1421

IL. PostgreSQL Client APPIICALIONScccueeriiriierriieniieiieeiteiteste ettt ettt ettt ebeesaee e 1424
CIUSEEIAD ...ttt ettt sttt e bt sttt e bt e st e b ebe e 1425
CTEALEAD ..ttt ettt et b e st et e bt e s a e st e bt e bt st e b e e bt e st e b ebeens 1428
CIEABLAIIZ ...ttt ettt et et st et e b e et e e sae e nesb e e ene 1432
CTEALEUSET «...vveeeteeeiteeeiteeesuteeeeuteesbaeeeabeeeeaseeesabeeeeabeeeembeeesabeeesabeesembeeemseeeabaeeesnteesnneesareeenns 1435
AIOPAD ..ttt sttt st ettt be e 1440
AIOPIANG ..ttt ettt e st sttt st e aeene e 1443
ATOPUSET ...ttt ettt ettt ettt et e st e e bt et e bt e st e s ae e st e sbesueemteebeemee bt eneeseseeensenbeententeene 1446

1<T0] oSO OTR PPN 1449
PECOMIIZ .ttt ettt ettt h et b st e sttt e be s bt et e bt eat et eaeetesee et e nbeenteteene 1451
PEQUITID .ttt b ettt st e bt s bt et e bt e st et e st e bt sbe et e s beente e ene 1454
PEAUMPALL ...ttt bttt et st b et 1464
PE_TESTOTE ...ttt ettt et e ettt e bt sat e et e bt e ebe e et e bt e s bt e sat e e bt e beesabeeabe e beesaaeeaeebeens 1470

POl ettt bttt b e bt et b e bt et bt e besbe et e b e eatenteeae 1478
TEINAEXAD ..ottt ettt st et b ettt et sttt ettt 1507
VACUUIMAD ...ttt ettt st be s b et b eat et e bt e b sbe e benbesanenteene 1510

1. PostgreSQL Server APPIICALIONScceeueeieriirieniinteieneeteteste ettt ettt 1514
INIEAD .ttt ettt sttt ettt st nae et be et e b eae 1515
PE_CONLIOIAALA ...ttt ettt st eat et s e saesbe et esbesanenteene 1519
PECL ettt ettt et ettt e et e st b e et teea bt e ae e teesn b e e bt e taeseteebeeneens 1520
PE_TESEEXIOE .eeieniieiieiiie ettt ettt et eet e et e st e st e et e et e e st besabe e bt e atesabe e be e teesebeebeebeens 1526
POSEETES c.teuteruieenteettesiteete et e stteeateeabe e beessbesabeenbeessaesaseenbeesstenstesabeensaenseesaseenseenseesaseenseenseens 1528
POSTMASTET ...eeteeuteentteriieete et estteebeebe e bt e stbesateenbeesseesateenbeesstesatesabeenseeseesaseenseensaessseenseenseens 1535

VIL. Internals 1536
44. Overview of PostgreSQL INternalscoceevieiiiiiiiiniiinieeieeeerte ettt 1538
44.1. The Path Of @ QUETYcoiiiiiiiiiiiieeieett ettt st ettt e 1538

44.2. How Connections are Establishedccoceviiiiiiiniiniiiiiiiiiiecceceeeeee 1538

44.3. The Parser SAZEccceeceeierieiiiniieieie ettt ettt sr e et ne st ne s neene 1539

AA. 3.1, PaTSET ettt ettt et sttt b e st st e s sabe et 1539

44.3.2. Transformation ProCess.........ccevierieriiiniiniieiieenieeieeeetteeteee e 1540

44.4. The PostgreSQL Rule SyStemccooiiiiiiiiiiiiiiieieiicieeceee e 1540
44.5. Planner/OPtiMiZercoveuiiuieiiiiiieie ettt et sttt e s 1541
44.5.1. Generating Possible Plans...........ccccoooeiiiiiiiiiieeeeeeeere e 1541

4.6, EXECULOT ..c..eeiitiiiieieeieesit ettt ettt ettt ettt e sb e sat e st e bt esbeesat e ebe e bt e saaeeaeeneens 1542

45, SYSEM CALALOES .. .eeueiiiiiiiieeiiiiie ettt sttt ettt sttt e sttt e s esane e 1544
A5.1. OVEIVIEW ...ttt ettt ettt et a et b e s ettt e s bt sbt et e ebeeae e bt eseenaeseeenbenbeeneenteene 1544

VST oTe li=Yo [o b ot =Ye =X o = NN U USRS U RO U R PP UPRPRSPPI 1545

S .3, DO _AIM ceietiiiee e ettt e e ettt e e e ee ittt e e e e e ar e e e e e etaa e e e e e b—aae e e e abaaaeeaataaaaeeaaaraaeeearaaaaeeanrraaaens 1546
R oY J= 11 Te) < J OO UURPTUPRPRRPTP 1548
S S DG AP T OC ittt eetieeeteeeete e et e e et e e et e e e tae e e ett e e ete e e ete e e eteeeeaeeeetaeeeataeeaateeeeateeeateaaans 1548

S 0. PG AT E LA eiiiiiiie ettt ettt et e e e et e e et e e e ae e e e teeeatteeeeabeeeeateeerraaans 1549
4. DG AT E T IIUL @ tiiiiiiitie et ettt ettt et e et e e et e et e e e te e e e ae s eetaeeeabeeeeabeeeeabeeearaaans 1550

XXVi

F TR T oY BN b Nl o s DU U RR SRR 1553

5.0, DG AU N IMEMDE TS ceutreieeeeiirieeeeeitreeeeeeitreeeeeesitreeeeeessreeeeesssreeseesareeeseeearreeeeesinreeeees 1554
A5 .10, DG CASE ttteeiieirreeeeeeite e e eeeit e e e eeetr e e eeetar e e e ee et a e e e e eeetaeaeeeeabeeeeenaraaeeeerraaeeeaaraaaeas 1554
S B R <Y BB = F=T= BN U USSR U RS RRRROPRR 1556
45,12, PG _CONSEILAINT tiiiiiriieeeeiirieeeeeiireeeeeeireeeeeeeitreeeeeeisreeeeestrseeeeesareeeeeeetrreeeeesisreeeeas 1559
Vi IO oYe HieTe) o A 12 =Y of =l o o WUUNN N OO U RSO U U U TSRS PRU 1562
45,14, PG_AAEADASE terctieerciieesiieerteeesreeerrtesstaeeettee sttt essaaesteeeabeeeasaeestbeaennseeeanraeasraaans 1563
45.15. PG_Ab_T01E_SEELING tererereeerrieeriteeeieeestteeetreesseeesseeesseeesseeessseeessseesssseesssseenns 1565
45.16. PG_AeFAULE_BCL etiitiieeiiieeeieeeireeerteeeeteeetreeeereesseeessaeeasseeessseeessseaessseesnsseesnsseenns 1565
2 ST W oo e 1= o=V o FO USROS 1566
/ST R oTe B e EoYC T ohak o) ol o o WSS 1568
5.1, PO CNUM atttiiiiieitieeeteeeetee e etee ettt e e bt e etaeeetteeensaeesssteesnseeeanseeeansaeesseeennseesansaeansseenns 1568
45.20. pg_foreign_data_WIADDEOT ierieereieeerieeaireeseeeesseeesseeessseeessseessseesssessssseenns 1569
45.2]. PG_fOTrEIGN_S@IVET teotiieeiieeitieeeiiieeeiteeetteeetteestteesteeesseeesseeessseeennseesasseeansseenns 1569
5.2 PG ANIAEK teeieeitirieeeeeitieee e e ettt e e e eetr e e e e e e —r e e e e e rb—eaaeeaa——aaaeaa—aaaaeeaaaraaaeearraaaeeaarraaaens 1570
VIR T oYe B 1 o) o T=0 ok o= SO OO U RSSO P PP PRI 1572
45.24, PG_LANGUAGE wureeeeeerireeeeeiireeeeeeitreeeeesirteeeeesirresaesassseessasssssessassseseeesssssesseesssseeeens 1573
45,2, PG L AT GEOD JECE tittieietieeetieeeetteeeette e et e e et e e eete e e ete e e e teeeeaeeeeteeeetteeeeateeeeateeeereaaens 1574
45.26. pg_largeobject_METadata wiieeccieeeeiieeeeteeeeieeeeteeeeteeeereeeetreeeetreeeeaaeeeeaneaens 1575
45,27 PO _NAMESPACE uriieeurieeeteeeeteeeetteeeetteeeetaeeeetteeeeteeeeeaeeesteeesseseesseesssseeassesensseeenseeeans 1575
5. 2. DO 0P CLAS Suutiiiiiieitieeeteeeeteeeereeeetreeeetaeeeetteeetaeeetaeeataeeebeseetaeeattaeeetbeseaateeearraaans 1576
Vi A B oYe He) o1 =N ol e ol RRRRRRR 1577
45.30. PG _OPEAMILY trrieeiiiiririeeieiitreeeeeeitre e e eeere e e e eesiareeeeeeraaeeeeesaareeseesareeeeeenaaeeeeenaraeeeas 1578
Rl R oY B T o= 11| < T = X o = RSP RRRRRPTR 1578
TR W Yo B o} ot Y TR USROS 1579
R 1 TR oY B ot =) B o I ol = SO USRI 1583
45.34, DG SNACDENA wuriiiieeiriiee et eeeete e eeeere e e eesttae e e e eeeaaeeeeeetareeeeenareeeeeenaraaeeenaraaaeas 1584
ViSRRI oY H=Y oo L= o R okl o Yl K o) o UHRNRUUUNN U ORI 1586
ViR T oY B o= Nl =1 i I < BT SRR RRRRRRRRRR 1586
SRR WA Yo B =Y NN =Y o T Y= WU U U TSRO R RS TRRRRRPRR 1589
Vi TR T T oYe B ol o Ko fo 1% BRSSO SRRSO 1589
Vi TR 1S B eYe B o - J ofo o B s e SUUUUNN RO SRRSO U RS URRRUOPRR 1591
45,40, PG £ S _ CONE LG IMAP M ttteeieiitrieeeeeiirreeeeeeireeeeeeiireeeeeeiirreeeeesisrseeeeesiareeeeeesrreeeeesisreeeens 1592
Vi e Yo B o = J e & K o) NN OO U RSO SRS R PR URRRRUPRU 1592
VR I R oTe B o= T o Y- af == ol USRS 1593
Z R I B oTe B o= T o= 11} X = o= USRS 1593
R IR Vi oTe B o Vs oY= WU 1594
VR I S oY BV ECY=R ol (10 o) ok 5 o Yo USSR 1602
45.46. SYSTEM VIEWS ..ottt ettt et et s s e e 1602
S] DG CUT SO S tuiieeeeeitteeeeeeiitteeeeeeitareeeeeaaareeeeeabseeaesassaeeeeeassseeesasssseseeeassseaeeeasreeaens 1603
S A8, DG G OUD teeeieurrieeeeeitteeeeeeitteeeeeettaeeeeeaaaeeeeeeabseaaeeassaeaeeeasstsaeesanssseseeeasraeaeeeansraaaens 1604
E R S B oTe B B Yo [0 3= TSRS 1605
45 .50, PG L OCKS teeieetiteeeeeiittee e e eeett e e e eetr e e e e eetae e e e e e bae e e e e e ataaaeeaabaaaaeeanaareaaeeatraaaeeaanrraaaans 1605
45.51. pg_prepared _StaltemMeNE S e iieeeeeiiteeeeeetreeeeestreeeeeesareeeeesaraeeeeesrreeeens 1608
45.52. PG_PTrePATrEa_XACES tiiiiirrrereeeeiirreeeeeiitreeeeeiirreesesaissaeeseessssseessassressessssssesseessssseens 1609
5. 53 PG T 0L @S tiittiieetie ettt e et e e e e et e e e ae e e e taeeettaeeeateeeeateeeatraaans 1610
S S DG T UL S tiietiiieiee ettt ettt e et e et e e et e et e et e e e ta e e e ae e e ettt e eeteeeetteeeeaaaeenaraaans 1611
5. 5. PO ST ANITS tieetieeiiieeetee ettt e ettt e ettt e et e et e e et e e et e e et e e e e ae e e e taeeetteeeeareeeeabeeetraaans 1611

XXVii

T T oY M=) o T= Lo Lo) SO U RO RR SRR 1613

T R < Ye B o=} ot DTSSR 1614
T T T oY B =Y N = - BT USSR R PSRRI 1617
45,59, PG L iMEZONE_ADITEVS cirriieieeiirrieeeeeitreeeeeeeitreeeeeeirreeeeeeirreeeeesareeeeeeetrreeeeesiareeeeas 1617
45.60. PG_LiMEZONE_NAMES tiiieiirrieeeeeirreeeeeeireeeeeesireeeeeeirreeeeesitrseeeeesisreeeeeesrreeeeesisreeeens 1618
E ¢ Y B oTe B U= T=S oSSR 1618
VN Y 1o MRV T=T=S ol 10 o) ok 5 o Yo 1= PSRRI 1619
R R B oo T 1= 2= SRS 1619
46. Frontend/Backend ProtoCOL..........cc.coviiiiiiiiiiiiiiiiieeeestc ettt 1621
46.1. OVETVIEW ..ottt ettt ettt et et eat e et e s bt e sat e st e bt e sbtesabeebeesbeesabesbeebeens 1621
46.1.1. Messaging OVETIVIEW.......cccueerueirierieriteniteeieeie et steeteesbee st steesbeesieesareeane 1621
46.1.2. Extended QUEry OVEIVIEWcccuevtieierueeuieieieieiesieetceiesieeeesaeseeeseesseeneeneeene 1622
46.1.3. Formats and Format Codesccceeieririenerinieriee e 1622

46.2. MESSAZE FLOW ..ottt ettt sttt ettt sbeeete e ene 1623
40.2. 1. STATt-TUD .ottt ettt st s be et eae 1623
46.2.2. SIMPLE QUETY ...ttt sttt ettt et e e st eae b eneeneeeae 1625
46.2.3. EXtended QUETYccoueruiiiiiiitieiestieetete sttt st 1626
46.2.4. FUNCHON Call....coiiiiiiiiiiiiiiiieeeeee ettt 1629
46.2.5. COPY OPETALIONS ...c..eenveiieniiniieiientieiieniesitete st eitentesteeatestesatesaesbeeaesbeenseneeene 1630
46.2.6. ASynchronous OPErations........cccuevteeeeruerieeriererienienteetenieeeesiesieessesieesensenne 1631
46.2.7. Cancelling Requests in Progress.........c.ccoeevererienenienienenieneneenenieeeeniene 1632
46.2.8. TerMINALION ...c..eeuiiiieiiiniieiteierteet ettt ettt st s eane e eae 1632
46.2.9. SSL Session ENCryption........ccccecevieierineinenenienieneeieneetene e 1633

46.3. Streaming Replication ProtoCol..........ccieiuierieniiiniienieeiecieeieesee et 1633
46.4. MeSSAZE DAt TYPES c.uveevreeieeiieiieeteeieeteeste sttt etee st e sitesbeesaeessaesebeeseenseessseenseenseens 1635
46.5. MESSAZE FOTTNALSeeeutieiieeieeiieiteete ettt ettt st e s st e esbeenbeesebeebeenseens 1635
46.6. Error and Notice Message Fieldscccooierieriiiniienieniecieeeesee st 1651
46.7. Summary of Changes since Protocol 2.0........ccceevvierienieriiienienienieeieeee st 1652
47. PostgreSQL Coding CONVENLIONScc.eervierueeriieriiiieenieenieerieesieesieesseesseesseessesssessseessesssesnne 1654
471, FOTINALEING ..eovvveiieeiieeieeniie ettt ettt et sit e sttt et et e satesabeesbeesbeesabeenbeenbeesasesnseeseens 1654
47.2. Reporting Errors Within the Server..........ccooieviiiiiinienieiieeieeieieeeeee e 1654
47.3. Error Message Style GUIAE.......ccoverieriiiiiienieniieieesteete ettt st e 1657
47.3.1. What Z0€S WHETE.....cccueiriiiiiiiiiiiieieeteite ettt ettt 1657
47.3.2. FOIMALIZeouieiiiiieieieeteiesieetete ettt sttt e st nene 1657
47.3.3. QUOtAtiON MATKS.....cciviieiiieesiieeiieeeiieeeiteeecteeesreeesreeesbeeeseseeessseesssseeesseeans 1658
47.3.4. USE OF QUOLES. c..cuvinrieiieieeieeiesieetete ettt et s ean e 1658
47.3.5. Grammar and PUNCTUALION.c..cecuertieieriiriieiereeeeteee et 1658
47.3.6. UpPper Case VS. LOWET CASEcc.eeureiieieiiiiieienieeieieeieeeeste e e 1659
47.3.7. AVOid PASSIVE VOICE.....cuiiuieuiiiiiiieiieiieie ettt 1659
47.3.8. Present VS Past tENSE.......coueeuiruiriiiieiieie it ettt st 1659
47.3.9. Type Of the ODJECL......ceviriiriiiiieieieteere ettt 1659
47.3.10. BIaCKELS....cuveitieiiitieieeie ettt sttt ettt s st eeeae 1660
47.3.11. Assembling erTOr MESSAZES. ...cc.eerteeurerueruierierteriienteeteeeesteeeeseesseessesseeeeneeene 1660
47.3.12. REASONS fOI BITOISeeuveiieiiitieiietieiieie ettt ettt ettt s et sbeeaee e eae 1660
47.3.13. FUNCLION NAMESeuiineiiieniintieiienteetceteeecete st eeteste et ente st eatesaesbeeaesbeeneeneeeae 1660
47.3.14. Tricky Words t0 avoidccoceeoieriirieniiieeneeteee et 1661
47.3.15. Proper SPEIIINGccccveiierieiiiieniieteie ettt st 1661
47.3.16. LOCAIIZATION. c..cuvetieiieieiiteiesieetet ettt sttt ettt et s 1661

XXViil

48. Native Language SUPPOTL........cecueerierieriiierieniesiteteesite st eieesteesitesteesseesbeesasessseesseesssesssesnne 1663

48.1. For the Translatorcccoiviiiiiiiiiiiiiiicie s 1663
48.1.1. REQUITEMENLSeeeuvieiieriiieieeieesiteeieeite st e te et e sbtesteebeebeesabessbeebeessnesasesane 1663

48.1.2. COMCEPLS cuveenrteruteeieeniee st ettt ettt et et e s bt e et e sbeesbeesabeeabeesbeesabessbeebeessnesasesane 1663

48.1.3. Creating and maintaining message catalogseevvervveerieervenieeeneeneeneennne 1664

48.1.4. Editing the PO fIleSc..cocoiiiiiiiiiieiiiiiccneeeeeeeee e 1665

48.2. For the Programmer.............coccocuiririieniinieiinieiee et 1666
48.2.1. MECRANICS ...uveeiiiiiieiie ittt ettt et ettt et et e s s 1666

48.2.2. Message-writing guidelinesc..ccceeuirieiininieiiinieeneeeee e 1667

49. Writing A Procedural Language Handlercc.oocoiiiiiiiiiiiicceceeeeee 1669
50. Genetic QUETY OPLIMIZET ...c..eevuiiriirrieniiieieeieeniee ettt ettt et st s et e st e st e ebeesaeesaees 1672
50.1. Query Handling as a Complex Optimization Problem.............ccccoooeienininnvnannne. 1672

50.2. Genetic AIZOTITMSc.covuiiiiiiiiieeieee ettt 1672

50.3. Genetic Query Optimization (GEQO) in PostgreSQLcccooiriireninieniniee. 1673
50.3.1. Generating Possible Plans with GEQO...........ccccoociniiiininiiieeeecee 1674

50.3.2. Future Implementation Tasks for PostgreSQL GEQOccccceeciiirreennnne. 1674

50.4. Further REAdINGcoueeieiiiiiieiieieee ettt et 1675

51. Index Access Method Interface Definitionccccoeceevieriiieniinienieneeiere st 1676
51.1. Catalog Entries for INAEXEScccecveriirieriiniiienienieeietee et 1676

51.2. Index Access Method FUNCLIONS..........ccevieiiiiininiiicieieeeceeeee e 1677

51.3. TNAEX SCANNINEZ ..c.vevveniieiieiiitieerieete ettt ettt ettt st s b s b e saee e saee 1681

51.4. Index Locking Considerations..........c..ceeevuererrierierienienieienieetenienieesesieeieeniesneeneenees 1682

51.5. Index Uniqueness ChECKS..........coerieriirieriiniiienienteiesieeteste et 1683

51.6. Index Cost Estimation FUNCHONS............ccccveiiiiiniiniiiiiiiicecccee e 1684

52, GIST INAEXES....cuiiuiiiiiieicieiet ettt st st 1688
521 INErOQUCTION ..viiiiiiiiiciciec e st 1688

52.2. EXEENSIDIIILY ...oouiiiiiiiiiicicic e 1688

52.3. IMPIEMENLALION...c..viiiieiieriieeteeiterte ettt ettt e st e st e st e e bt e bt e sbeenbeenbeesasesaneenne 1688

52,4, EXAMPIES ...eouviiniieriiieiieiiesite et ete et e ste sttt e sitesate st esaeesabesabeenbeesbeesabeenbeebeesabesaneente 1695

52.5. Crash RECOVETY......ciiuiiiiiiiieiieitesteete ettt ettt sttt sttt e b e saaeeaee 1695

530 GIN INAEXES ...t s 1697
53,1 INErOAUCHION ..ttt 1697

53.2. EXEENSIDIIILY ..eeutiiiiiiiiiiieciteet ettt sttt st ettt 1697

53.3. IMPIeMENtALION.....coueiiieiieiiriieieteeiete ettt ettt ettt e 1698
53.3.1. GIN fast update techniqUeccccoceevieriiiieniinieiiceeceeece e 1699

53.3.2. Partial match algorithm...........cccccocooiiiiiiiiiiicc e 1699

53.4. GIN tips and triCKS........cceevuiiiiiiiiiiieieeeee e e e 1699

53,5, LIMIEATIONS ¢e.uteeuteeriteeiteetee st et et e st eite sttt e st e st st e bt e sbeesabe e bt enbeesabeeabeenbeesanesaneeane 1700

53.6. EXAMPIES ..ot s e 1701

54. Database Physical StOTAZEccerieiiiiriieiertieiete ettt sttt eaes 1702
54.1. Database File LayOUut.........coociiiiiiiiiiieieeee et 1702

S4.2. TOAST ettt sttt sttt ettt s sa e eaee 1704

54.3. FIee SPACE MAPcuiiniieiieie ittt ettt sttt ettt 1706

54.4. VISIDIIEY IMAD ...eetiiiieiieiieie ettt ettt et sttt e ae s 1706

54.5. Database Page LayOuLtcccceceriiiiiinieieneeteneeeee ettt 1706

55. BKI Backend INtEIface.coueiiiriiiiiiiiieieiietec ettt 1710
55.1. BKI File FOIMALccooiiiiiiiiiiiiiiiiticctccee ettt s 1710

55.2. BKT COMMANGSooviiiiiiiieiiiiiitititcteteeeteeee ettt et s s 1710

XXIX

55.3. Structure of the Bootstrap BKI File..........cocceviiiiiiiiiiniiniiiiciceiee et 1711

55,4 EXAMPIEeiiuiiiiiiiiieeieeiteete ettt ettt et st ettt st b e st e et e bee st e eaae et 1712

56. How the Planner Uses StatiStiCS........covuiiiiiiiiiiiiiiiiiiiii et 1713
56.1. Row Estimation EXamples.........c.covieriiriiiiniienienieiieeitesie ettt 1713

VIII. Appendixes 1719
A PoStgreSQL Err0r COAEs......c..oouiiiiiiiiiiiieieeceeteeete ettt st 1720
B. Date/TIme SUPPOTLceeeuiiiiiiiiieieiieeee sttt ettt s e sae s ne e neene 1730
B.1. Date/Time Input INterpretationcccooiecvirieiieiiieeneneeeeeeeee e e 1730

B.2. Date/Time Key WOTdS........cc.coiiiiiiiiiiiiiiiiicc e 1731

B.3. Date/Time Configuration Filesccccoooieiiiiiiiiiiiee e 1732

B.4. HiStOry Of UNIES ...oueiuiiitiiiieieetieie sttt ettt sttt e e e e te b eneeeeene 1733

C. SQL KEY WOIAS. ...ttt ettt ettt b et eb et e sttt e sbe s st et e sbeeneesteeaeeneesees 1735
D. SQL CONOIMANCEccuveiiiuiieieiiie ettt e e e et e e et e e et e e eteeeeaeeeeaaeseeaneeeeaeeeens 1762
D.1. Supported FEAtUIESc..eoeeiiriieiieiieieie ettt sttt et st beeaee e 1763

D.2. Unsupported FEAtUIEScccuerviiiriiiniiiiiiiieniierieeeeteeite ettt 1779

E. REICASE INOLESooveiiiiiiieiieiteiieiietentet ettt sttt st st sttt eae b b sae s 1794
E.1.REIASE 9.0.4 ..o 1794
E.1.1. Migration to Version 9.0.4.........ccccoirviiriiniiiiniinienieneeeneeeeeseee e 1794

E.1.2. CRANZES ..ttt st sttt 1794
E.2.Release 9.0.3 ..o 1796
E.2.1. Migration to Version 9.0.3........ccccooiriininiiiininieienceeneeeeeseetee e 1796

E.2.2. CRANZES ..cvveniiiiiierieeeieeteeetetee ettt sttt st e 1796
E.3.Release 9.0.2 ..o e 1797
E.3.1. Migration to Version 9.0.2........ccceviieiiirriienieeieeieeseeere et eiee e sve e saee e 1798

E.3.2. CRANEES .ouveeiieeiiieieeeee ettt ettt ettt et ettt et e st e st e e enaaeeanes 1798
E.4.Release 9.0.1 ..o e 1800
E.4.1. Migration to Version 9.0.1.......cccceviiiiiiiiiiniinieeieeieete ettt 1801

Ei4.2. CRANEES .ouveeiieeiieiieeieee ettt ettt ettt e b e st st be et e i 1801
E.5.Release 9.0 ... s 1802
E.5.1 OVEIVIEW .ot 1802

E.5.2. Migration to Version 9.0..........ccccueriiriieiiiienieeieeie ettt 1803

E.5.2.1. Server SEtNESccceririeriinieiinieiee sttt st 1803

E.5.2.2. QUETICS ...uveeeevieeeiiieeeieeeciee et e et ee st e e e iaeestaeesbeaessbeeessseeensseeenssenannns 1803

E.5.2.3. Data TYPES «..eoveeuiiriieieniieieeieeieeeeeie ettt s 1803

E.5.2.4. Object RENAmMINgc..cocoeciieiiiiiinieieiiiieieeeee e 1804

E.5.2.5. PL/PZSQL ...ttt sttt 1804

E.5.2.6. Other Incompatibilitiescccoovievieriiieiiiniiiiiecc e 1805

E.5.30 CRANEES ..uveeiieiie ettt st 1805

EL5.3. 1. SCIVET ..ttt et sttt 1806

E.5.3.1.1. Continuous Archiving and Streaming Replication................ 1806

E.5.3.1.2. Performanceccoceecuerueeienenieiesieeiesie e 1806

E.5.3.1.3. OPtIMIZEr......coiuiiuieiiiieiienieeiee e 1806

E.5.3.1.4. GEQO ...ttt 1807

E.5.3.1.5. Optimizer StatiStiCSccueruireeruerieienieeienieeieenie et sieeeeeeene 1807

E.5.3.1.6. AuthentiCationc..cceceeiverenieieiniieniieeeeeeeeese e 1807

E.5.3.1.7. MONItOTING.c..ceveitieiiiniieiientieiteie sttt ettt s 1808

E.5.3.1.8. StatisticS COUNLETScceeeruirririeieiereiieestiteieeeeeneee e 1808

XXX

E.5.3.1.9. Server Settings.......cceecueeriierieriieiiieniiente sttt see e 1808

E.5.3.2. QUETICS ...uveieiviieeiiieeeiee ettt e et e et e e e ta e e e te e e s beeesebeeesesaeesabeeensseaanens 1809
E.5.3.2.1. Unicode StrNES ...cc.veeeeriierienienieenitenie et eieesee st eveesiee e 1809
E.5.3.3. Object Manipulationcccceevierrieerienieiieeieeniee e 1809
E.5.3.3.1. ALTER TABLE .ttt s 1810
E.5.3.3.2. CREATE TABLE ...eeciiriieietieieetenieenenieeieeneeneenesaeesnesseennenneene 1810
E.5.3.3.3. CONSIAINLS......eeivieriiiriieeiieiiente ettt ettt 1810
E.5.3.3.4. Object PermiSsions.........cocceceevuereecienieneeniieeeneeneereseeeenene 1811
E.5.3.4. Utility OPErationsccccceeeevueriereenenieienieeeereeeesneseeneseeneneene 1811
E.5.314.1. COPY ittt e 1811
E.5.3.4.2 EXPLATIN ottt ettt s 1812
E.5.3.4.3. VACUUM ..ooiiiiiiiiiiiiiece e e 1812
E.5.3.4.4. INAEXES...ccouiiriiiiiiniteeieeieetteete ettt 1812
E.5.3.5. DAta TYPES eveeruiieiieiieniiieieeeesite ettt st sttt s 1813
E.5.3.5.1. Full Text Search..........ccccceevieriiriiiinieniiniieeeneenceeeeee 1813
E.5.3.6. FUNCHONS......oiuiiiiiiieieiteeteeet ettt st 1813
E.5.3.6. 1. AGEIeZates....ccoeiuiiiiiieiieiieiieie ettt et 1814
E.5.3.6.2. Bit StrNES..c.eeiiiiiiiiiiieienieetee sttt 1814
E.5.3.6.3. Object Information FUNCtionsccccecvevereenencnnenenienene 1814
E.5.3.6.4. Function and Trigger Creationccceeeeeenereenienenseenienne 1815
E.5.3.7. Server-Side Languagesc..ccccevveevierenienienenienieneene e 1815
E.5.3.7.1. PL/pgSQL Server-Side Languagec.ccccevereerrenencuenene 1815
E.5.3.7.2. PL/Perl Server-Side Languageccccceceveenereenucnennenenne 1816
E.5.3.7.3. PL/Python Server-Side Languageccccoccevereenenencuenncne 1816
E.5.3.8. Client APPIICAtIONS ...eevuvieiieiieniieeiienieenite st eieeniee e ere e seresreeieens 1817
E.5.3.8. 1. PSQL ittt e 1817
E.5.3.8.1.1. pSQl DiSPlaycccveeueriieniiinieeieeniiesieeieesiee e 1817

E.5.3.8.1.2. psql \d Commandscccceceevuereruenenencrenencennenne. 1818

E.5.3.8.2. PE UMD ...eiiiiiiiiiiieeieeiteteete ettt 1818
E.5.3.8.3. PE_Ctluciiiiiiiiiccc e 1818
E.5.3.9. Development TOOIScoceeriiniiniienienie et 1819
E.5.3.9. 1 liDPQq.cciiiiiiiiiiiiiiicicc 1819
E.5.3.0.2. @CPE cvtitteniteeeetteetee et 1819
E.5.3.9.2.1. €CPZ CUISOLS ...cuveruieriiieiieieniieieneeeeeie st 1820

E.5.3.10. BUild OPtiONScc.eeiriiriiiiieieeniintenieteeeieeieete st 1820
E.5.3.10.1. MAKEfIIES ...cverviriireieieeeiinieniereeteteceee et 1820
E.5.3.10.2. WINAOWS.....coutriiriiiiiiieinitnenenecteteeee sttt 1820
E.5.3.11. S0UICE COde....couiiiiiiiiiiieiieieeeeeete ettt st 1820
E.5.3.11.1. New Build Requirementscccccceeirvinininncniniennnne 1822
E.5.3.11.2. POrtabilityccceovevvevieieiiinenieniciceeeeestcerceeee e 1822
E.5.3.11.3. Server Programmingcccccoceevenieiieninieneneeeseeeeeene 1822
E.5.3.11.4. Server HOOKScccueeuiriiiiiiiiiiieeccicceeeeceeeee e 1823
E.5.3.11.5. Binary Upgrade SUppOrt.........cccceeuerueeieninienieneeienieeeeeene 1823
E.5.3.12. CONLIID ..ttt st 1823
E.0. REIEaSE 8.4.8 ...ttt sttt et bt b et 1824
E.6.1. Migration to Version 8.4.8.........cccooiiiiriiiiieniinieie et 1824
E.0.2. CRANZESeetieiieieiieeteteee ettt ettt ettt et 1824
E.7.REICASE 8.4.7 ..ottt sttt ettt bttt 1826

XXXI

E.7.1. Migration to VErSION 8.4.7cc.cooiiriieiiiiiiienieeieeieesite et sttt ste st saee s 1826

E.7.2. CRANEES .uveeiieiieeteeeee ettt ettt ettt ettt e be et be e sanes 1826

E.8. REICASE 8.4.0cniiiiiiiiiieiiceeteet ettt ettt ettt et 1827
E.8.1. Migration to VErsion 8.4.6.......cccuiriirieiiiieniieeieeieenite ettt 1827
E.8.2. CRANZES ...uveeiiiiie ittt ettt ettt st e b e 1827

E.9. REIEASE 8.4.5 ...ttt e e 1829
E.9.1. Migration to Version 8.4.5........ccccoiiiininiiiiininieiineeeeneeeeeseeee e 1829
E.9.2. ChAN@ESooviiieiiieeieeceeee ettt 1829

E.10. RElEaSE 844 ..ottt ettt sttt et 1832
E.10.1. Migration to Version 8.4.4..........ccccoceviiiiiiiiiniiieeeese e 1833
E.10.2. Changesc..ooeeiiiiiiieiiieeee e e 1833

E .11 REIEASE 8.4.3 ..ttt ettt sttt e 1835
E.11.1. Migration to Version 8.4.3........ccooiriiiirieienieeieie et 1835

E. 112, CRANEZES ..ottt ettt st ettt b et e e et enee e 1835

E. 12, REICASE 8.4.2 ..ttt ettt sttt et st be et 1838
E.12.1. Migration to Version 8.4.2.......ccccocieiereriirieniieienie ettt 1838
E.12.2. CRANEZES ..ottt ettt ettt ettt e nee s 1838

E 130 REICASE 8.4.1 ..ottt sttt et bbbttt 1841
E.13.1. Migration to Version 8.4.1......cccccoirieririiieniinienieeieetenieeeee e 1841
E.13.2. ChaNEES ..ottt ettt et sttt st 1841
E.T4.REICASE 8.4 ...ttt ettt ettt et ae bbbttt 1843
EL 141 OVEIVIEW .ontiiiiiiiiiiiiieieeiteteeie ettt ettt sttt et 1843
E.14.2. Migration to Version 8.4ccccevirierenirieniinienieneetesieeeesiesieeteee e 1844
E.14.2.1. GeNeral....c.ooeeiiiiiiiniiiiiiceieeteseetee sttt st 1844

E.14.2.2. SErver SETHNESceeveeiieriierieenieeieenieenitesreeteenieesveeseesieesesesseenaeens 1844

E14.2.3, QUETIES ...eiiiviieiiieeeiiee ettt e e e e ve e e eereeeeabeeesabeeeereaenens 1845

E.14.2.4. Functions and OPeratorscceceereereerieenieeneesiueenseeneessesssesseens 1845

E.14.2.4.1. Temporal Functions and Operatorscceeceerveerveerueennee. 1846

E.14.3. ChanGEs ...cccueevuiieiieiieiie ettt sttt ettt ettt ettt e be e st esete e b e saaesanes 1847
E.14.3.1. PerfOrmancec..coccecveviirieiiinieienenicicneetciceeeee e 1847

B 143,20 SEIVET ..ottt st 1848

E.14.3.2.1. SELHNES ...veoveenierieeicieeictc et 1848

E.14.3.2.2. Authentication and SECUTItY........cccevvuerruierieeneenieerieerieenane. 1848

E.14.3.2.3. pg_hba . CONT wtririiiiirieeeieeereeereeereeeeieeesreeesereeeereeesnaeas 1848

E.14.3.2.4. Continuous Archivingc.ccoceeverirvieninveencnieenreneerenene 1849

E.14.3.2.5. MONITOTING......couteiiiieiiiiieieie ittt 1849

Eo14.3.3. QUETIES ..veieiiieeeiiieeeieeeeiee ettt ettt eetee et e s beeesebeeesnseeesnsaeensseennnns 1850

E.14.3.3.1. TRUNCATE ..ccciiiieiiiieieit ettt s 1851

E.14.3.3.2. EXPLATN .iiiiiiiiiieieeiteeete ettt 1851

E.14.3.3.3. LIMIT/OFESET .eecieiuieiieiieieeie st s eeeneene 1851

E.14.3.4. Object Manipulationcccceceeeeierierienienieeienie e 1851

E. 14341 ALTER ceiiiiiie e 1852

E.14.3.4.2. Database Manipulation.............ccecevueeienenieneneenieneeieene 1852

E.14.3.5. Utility OPerationscccccceeeeriereerierieniieienieeeenteeieenaeseeeseesieseeneenne 1853

E.14.3.5.1. INAEXES. ...veiuieieriieieieeiiesie ettt s 1853

E.14.3.5.2. Full Text INdeXescccoereerereeieniinienieeeenie e 1853

E.14.3.5.3. VACUUM. .ottt sttt s 1854

E.14.3.6. Data TYPES .eveeviriieieieeiieieetteteste ettt st 1854

XXXIT

E.14.3.6.1. Temporal Data TYPeS......ccccerveerrvienienieriienieeneenieeieeseeenaees 1854

B 14.3.6.2. ATTAYS veevuieeiiiiieriieeieeteesiteste ettt st ettt e 1855

E.14.3.6.3. Wide-Value Storage (TOAST) ...ccccevieviiiinienienieeeeeeee, 1855

E.14.3.7. FUNCHONS. ..ottt 1856

E.14.3.7.1. Object Information Functionsccccccecueeveeneeniinneeneennee. 1856

E.14.3.7.2. Function Creation...........cecceeuereeieneneennineeneeneereneenenene 1857

E.14.3.7.3. PL/pgSQL Server-Side Language............cccceereevveneecuennenne 1857

E.14.3.8. Client APPLICALIONScceecveeueeiiniieieienieienieerete e e 1858

E.14.3.8.1. PSAL ittt 1858

E.14.3.8.2. psql \d* commands.............cccccoceeeuiniriiininiieninieeneeeene 1859

E.14.3.8.3. P dUmp...c.cooiiiiiiiiiiiiiiccceee e 1859

E.14.3.9. Programming TOOIS........ccccuevuririminenienieeeinene et 1860

E.14.3.9.1. IIDPQ.aeieiieiiiriniiiccceeesesectetee sttt 1860

E.14.3.9.2. libpq SSL (Secure Sockets Layer) supportcccceueeeee. 1860

E.14.3.9.3. €CDE oo e 1861

E.14.3.9.4. Server Programming Interface (SPI).......ccccccccecerinencnncnnne 1861

E.14.3.10. BUild OPtOnScocueiuerieiietieienieeienie sttt st 1861

E.14.3.11. SoUrce COe....c.ueeiiiiiiieiiniieieeieeteie ettt 1862

E.14.3.12. CONLIID w.oniiieiiiiiecceeceesteeeetee et 1863

E.15. Release 8.3.15 ..ottt e 1864
E.15.1. Migration to Version 8.3.15.....c.ccociriiririiiininieiineeeneeeeeeeteee e 1864
E.15.2. ChANEES ..eenviiienieiieeieieeiteeste ettt st sttt st 1864

E.16. Release 8.3.14 ..ot 1865
E.16.1. Migration to Version 8.3.14........cccceeiuiirienieeieeiienieereeie e sre e 1866
E.16.2. CHANZES ...eevieiiieiiieiieiie ettt sttt ettt ettt s e st e st e beesaaesnteenbaenaaesnnes 1866
E.17.Release 8.3.13 ..o e 1866
E.17.1. Migration to Version 8.3.13.......ccceeiiiiiiiniieieeieenteeteeie ettt 1867
E.17.2. CHANZES ...eovieiieiiieiteite ettt ettt ettt ettt e be e st esate e b e naaesnnes 1867

E.18. Release 8.3.12 ..o e 1868
E.18.1. Migration to Version 8.3.12........ceceeiuiriiieniinieeieeniieeieeie ettt 1869
E.18.2. ChANES ...eevieiiiiiieiieite ettt ettt ettt ettt e be e st st e e i 1869
E.19.Release 8.3.11 ..o s 1871
E.19.1. Migration to Version 8.3.11....c.cccoviiriiiiiiiniinieiieesiteeeeie et 1871
E.19.2. Changescc.ceeuueeieiiieiiiiieeieeite ettt ettt sttt st e s saees 1871

E.20. Release 8.3.10 c..coueruiieiieiiiiiriieicieietet ettt ettt s s 1873
E.20.1. Migration to Version 8.3.10........ccccoceiiririeniiieineeeeseeeeeeeeeee e 1873
E.20.2. Changesc..oouieiiiieieieeeeteeieee et 1873

E.21. Release 8.3.9 ..ottt ettt sttt st e 1875
E.21.1. Migration to Version 8.3.9.......cccociiiiiiiiiiiiiiiiicee e 1875
E.21.2. Chan@ES ...ceoveeiiiiieeieeite ettt ettt ettt et 1875

E.22. Relase 8.3.8 ..ottt ettt et st e 1877
E.22.1. Migration to Version 8.3.8cccooiriiiirieienieeieie ettt 1877
E.22.2. ChANZES ...eouvieiiiiieeieeite ettt ettt ettt e 1877

E.23. ReICASE 8.3.7 ..ttt ettt sttt ettt be et eae 1879
E.23.1. Migration to Version 8.3.7......ccccoviriiririiieniieieie ettt 1879
E.23.2. CHANEZES ..ottt ettt et 1879

E.24. RelaSE 8.3.0eiiiiiiiiiiiiiiecccette ettt 1881
E.24.1. Migration to Version 8.3.0......cccccviriiriiririeniinieniesieetenie ettt 1881

XXXIi1

E.24.2. ChAN@ES ...coviiiiiiieeiieiie ettt sttt ettt ettt ettt et e st esate e b e saaesaees 1881

E.25. Release 8.3.5 ..o e 1883
E.25.1. Migration to Version 8.3.5......ccccevviiriiiiiiiinieeieeieeniteete ettt 1883
E.25.2. ChANZES ...eovieiiiiiieiieite ettt ettt ettt ettt ettt e e e e i 1883

E.26. Release 8.3.4ccoiiiiiiiiiiiiicic s 1885
E.26.1. Migration to Version 8.3.4........c.ccccovieririiieninieineeeeneeeeeseeeere e 1885
E.26.2. ChanEescooeeeiiiieieiieieeieeiteeeset ettt e e 1885

E.27. Release 8.3.3 ..ottt ettt ettt st et st 1887
E.27.1. Migration to Version 8.3.3.......ccccociiiiiiiiiiiiiiieieeeeese et 1887
E.27.2. Changesc.ooouieiiiiiiieiieeeeeee e 1887

E.28. RElSE 8.3.2 ..ttt st ettt 1888
E.28.1. Migration to Version 8.3.2.......ccccocirieiiriirienieeienie ettt 1888
E.28.2. ChanGEs ...cccueeeuiiiiieiieiie ittt ettt ettt ettt 1888

E.29. RelCASE 8.3.1 ..ottt ettt sttt et et be et eae 1890
E.29.1. Migration to Version 8.3.1........cccceeviririninenieieinenenesreteeeeeeeveeve e 1891
E.20.2. Changescccoooiiiiiiiiiiiii e 1891

E.30. REICASE 8.3 ...ttt ettt ettt st et b ettt et bbbttt 1892
E.30. 1. OVEIVIEW .cutiiiiniiiiieiieiteeiteeett ettt ettt sttt st et nae s 1893
E.30.2. Migration to Version 8.3ccceririireniiieniieieie ettt 1894

E.30.2.1. GeNeral....c..cooieiiiiiiiiiicicieieeceeeeeee e 1894
E.30.2.2. Configuration Parameters...........cceouererienieneeiienieneeneneeeneeeeniene 1895
E.30.2.3. Character Encodingscocceceveerienenienienenienieneene e 1896
E.30.3. ChaNEES ..oovirieeniiiieeieieeitetesteetee ettt sttt ettt e 1897
E.30.3.1. Performance...........ccocovueieiiiiininiinieieicieince e 1897
E.30.3.2. SEIVET ..ottt 1898
E.30.3.3. MONILOTINGveevieiieriieeiienieeniesieenieesitesteeseesaeesseesseesseesssesnsesnseens 1899
E.30.3.4. AUuthentiCation..........cccoouevveiiirininiiieieicieieese e 1900
E.30.3.5. Write-Ahead Log (WAL) and Continuous Archivingc...c...... 1900
E.30.3.6. QUETIESeccuviieiiiieeiiieeeiee et e et et e et e e st e e s veeesebeeesebeeesabaeeereaenens 1901
E.30.3.7. Object Manipulationcceceervieeniienienieenieeniie e 1902
E.30.3.8. Utility COMMANAS....c...eevvirriiriiriiiniienie ettt eieesiee e eee e 1902
E.30.3.9. Data TYPES ..ecvvierieiieniiieiteitenite ettt sttt ettt ettt s 1903
E.30.3.10. FUNCHIONS.....cociiiiiiiiiiiiiiiieiniccice e 1903
E.30.3.11. PL/pgSQL Server-Side Language...........ccecceeveerienreeneeneenriennens 1904
E.30.3.12. Other Server-Side Languagesc..ccccecveveeieniireenenieenienenieienne 1905
E.30.3.13. PSQLaciiitiiiieieieieeeserecetec ettt ettt 1905
E.30.3.14. pg_dumpcooviiiiiiiiiicieceteeee e e 1906
E.30.3.15. Other Client AppliCatioNsccceeruiriecieniieiieiieeeie e 1906
E.30.3.16. 1IDPQ c.vevieeieieieiinienieneeteetee ettt ettt 1906
E.30.3.17. @CPZ et 1907
E.30.3.18. Windows POrt.........cceiiiiiiiieiinieeeeeeeee e 1907
E.30.3.19. Server Programming Interface (SPI)c.ccccoceveviiiininininennne 1907
E.30.3.20. Build OPHONScotruerieieieiieeneintetereeeieeieeie ettt 1908
E.30.3.21. SoUICE COAE.....eeemuiiiiiiiieiiiniiiiieeteeec et 1908
E.30.3.22. CONLLID ..cuenieiieiiiiiiercceeeeeseeeeeeet et 1909

E.31. Release 8.2.21 c..ouiiiieiiiiiiiiicctetetteteset ettt s e 1909
E.31.1. Migration to Version 8.2.21ccccevviiriiiriininienieneeteneteeseee e 1909
E.31.2. CRANEZES ..ottt sttt sttt 1909

XXXIV

E.32. Release 8.2.20cc.eoiiriirieiiniieienitetetesit ettt sttt e st 1910
E.32.1. Migration to Version 8.2.20........cccceevuerriieriiriieiiiieniienieeie et stesteeieesaee e 1910
E.32.2. Changes ...ccc.eeeuieiiieiieiie ittt sttt ettt ettt ettt ettt e e e e i 1910

E.33.Release 8.2.19 ..ottt et 1911
E.33.1. Migration to Version 8.2.19.......cccceeiiiriiiiniiriiiierteeeee et 1911
E.33.2. Changes ...ccc.ceeueeiiieiieiie ittt ettt ettt ettt e e s e saees 1912

E.34. Release 8.2.18 ..coueiiiiieiiiiriieieceetet ettt sttt ettt 1913
E.34.1. Migration to Version 8.2.18........c..ccceviiiiieniiiiinieeeneeeeeeeeeeee e 1913
E.34.2. Changesc..ooeeiiiiieieiieeceeeeet et e 1913

E.35. RelCaSE 8.2.17 ettt sttt ettt 1915
E.35.1. Migration to Version 8.2.17........ccccccciiiiiiiiiiiiiiiieeese e 1915
E.35.2. Changesc..oouieiiiiiiieiiee e e 1915

E.36. RelEaSE 8.2.16 ..ottt sttt ettt ene 1917
E.36.1. Migration to Version 8.2.10......c..cccccueirininenienieininenenicreeeeeeeiesre e 1917
E.30.2. ChANZESeoviviriieieieiieiieiente ettt ettt ettt sttt 1917

E.37.Release 8.2.15 ..ottt et sttt 1919
E.37.1. Migration to Version 8.2.15......ccccceeiririninenieiiinincnceiereeeeeeeeee e 1919
E.37.2. CHANZES ..ottt ettt sttt et 1919

E.38. Release 8.2.14 ..ottt e s 1920
E.38.1. Migration to Version 8.2.14ccccocueriiirieninieiineetenieeeeesieeee e 1920
E.38.2. CHANEZES ..ottt sttt 1921

E.39.Release 8.2.13 ..ottt s 1922
E.39.1. Migration to Version 8.2.13.....c.ccocerieririiieniinieineeienieeeeeseeteee e 1922
E.39.2. ChANGES ...eoovieeiiieiieiieiie ettt sttt ettt ettt et e st e et e baesaaessteenbaenanennnes 1922

E.40. Release 8.2.12ouiiiiiiiiiiieiieteieetetesteest ettt sttt st st 1923
E.40.1. Migration to Version 8.2.12........cccceeruiriiienienieeiieneeeie et enieesee e eieesaee e 1923
E.40.2. CHANZES ...eevvieviiiiieiieiie ettt sttt ettt ettt este st e baesatessteenbaesanesnnes 1924

E.41.Release 8.2.11 oottt sttt ettt st 1925
E.41.1. Migration to Version 8.2.11......cccecueeiiiriiiiriinieiieeniieeieeie ettt 1925
Ei41.2. Chan@ES ...cooueeiuiiiieeiieiie ettt ettt ettt ettt ettt e st e st e b e saaesaees 1925

E.42. Release 8.2.10co.coiiriiiiiiiiiiienteeetecteteette ettt sttt s 1926
E.42.1. Migration to Version 8.2.10.......ccocueeruiriiieniirieniieniieeieeieeiee st 1926
E.42.2. ChHANZES ...eovieiiiiieeiteite ettt ettt ettt ettt ettt e beesaeesaees 1926

E.43.ReleaSE 8.2.9 ..ottt e 1928
E.43.1. Migration to Version 8.2.9.......ccccociovieviriiiiininiiiineeeneeeeeeeee e 1928
E.43.2. Changesc.coceeuiiieieiicieeeeieet ettt s 1928

E 44, Release 8.2.8ueeieeieiiieeieee ettt ettt ettt st st et 1928
E.44.1. Migration to Version 8.2.8ccccccioviiiiiiiiiniiiiiineeeese et 1929
E.44.2. Changesc..oocoeoiiiiiiiiiiicieee et e 1929

Ei4S5. RELEASE 8.2.7 ettt ettt ettt sttt e 1930
E.45.1. Migration to VErsion 8.2.7........cccceueeiririninenienieieenenientcreneeeneeresresaeseenee 1930
E.45.2. Changescocoooiiiiiiiiiiiicee e 1930

E.46. REICASE 8.2.0 ...ueiiiiiieieeiieeeeee ettt ettt sttt ettt be ettt 1932
E.46.1. Migration to VErsion 8.2.6........cccccueiriruininenienieieeneniesieteeeeeneenese e 1932
E.40.2. ChaNEESooverviiiieieieiieiieentestetetet ettt ettt sttt 1932

E.47. REICASE 8.2.5 ..ttt s s 1934
E.47.1. Migration to Version 8.2.5......ccccoviriiririiieniieiteie et 1934
E.47.2. CRANZES ..ottt sttt sttt st 1934

XXXV

E.48. ReICASE 8.2.4 ...ttt sttt st sttt 1935
E.48.1. Migration to Version 8.2.4.........ccecueevieriiienienieeieeniieete ettt 1935
E.48.2. CHANZES ...eouvieiiiiiieiieiie ettt ettt ettt et sttt ettt e e s saees 1935

E.49. Relase 8.2.3ooiiiiiiiiieieeiteteet ettt ettt ettt e st e 1936
E.49.1. Migration to Version 8.2.3.........ccocueriiiiiiinienieeieeniteeteeie ettt 1936
E.49.2. ChaNEEScvieiieiiriieieieeeeteeteeet ettt ettt e 1936

E.50. RElEASE 8.2.2 ..ttt ettt sttt e 1936
E.50.1. Migration to Version 8.2.2.......cccccccovueviriiienineeieeeeeenie e 1937
E.50.2. Changesc..ooveiiiiieieiieiceeieeeere ettt e 1937

E.ST.REIEASE 8.2.1 weeniiiieeeteeeetet ettt ettt sttt st e 1938
E.51.1. Migration to Version 8.2.1.......cccocioiiiiiiiiiiiiiiiiieieeee e 1938
E.51.2. Changesc.oouieiiiiiiieiiieee e e 1938

E.52. REIEASE 8.2 ...ttt ettt et 1939
E.52. 1. OVEIVIEW .utiiiiiiitieieiteet ettt ettt ettt sttt bt e e e 1939
E.52.2. Migration to VErsion 8.2........cccceueieiririininienieieieene et 1939
E.52.3. ChaNEES ...eeoviviiiieieieiieiteentest ettt ettt sttt 1941

E.52.3.1. Performance Improvementsccccceeveeeinenenienneieneeenenenienene 1941
E.52.3.2. Server Changesc.ccecuerueeierienieienieniieiesieetenie e st 1942
E.52.3.3. QUEry Changes........cccceeeerieriienienieienieniteienieeitenie et 1944
E.52.3.4. Object Manipulation Changescoceeeuereeienereeneneenienenieniene 1945
E.52.3.5. Utility Command Changes...........ccccevuereerienieeieneneeneneenieneneenienne 1946
E.52.3.6. Date/Time Changes.........cccceceevuereeienenienienieeienieeeenie e 1947
E.52.3.7. Other Data Type and Function Changesc.cceccevereenienennenienne 1947
E.52.3.8. PL/pgSQL Server-Side Language Changes.........c..ccoceeeevverennenienne 1948
E.52.3.9. PL/Perl Server-Side Language Changes...........cccoceevveereerveerveennnene 1948
E.52.3.10. PL/Python Server-Side Language Changes..........ccccceecvevvervveenenne 1949
E.52.3.11. pSQl ChanGEscoovvevuiiiiieiieniieeieeitesite sttt st e 1949
E.52.3.12. pg_dump CRanges.........cceeveerierniieneenieiieeieenieesieeieesieesieesvesneens 1950
E.52.3.13. libPq CRANEES ...eeoveeiviiiieiieniieeieeiteeite ettt sttt s 1950
E.52.3.14. €CPZ CRaANGES ...ccoveevuiiiiieiieniieeieeitesite sttt sttt st 1950
E.52.3.15. WINdOwS POTt......cccoiiiiiiniiiiniiienicntcicneec e 1951
E.52.3.16. Source Code Changesccoceevueeruienierieenieeniesieeieeniee e eeeeieens 1951
E.52.3.17. Contrib Changesccccceveeriernieeniienie ettt esiee st 1952

E.53.Release 8.1.23 ..ottt e e 1953
E.53.1. Migration to Version 8.1.23........ccccoceiiriiiininieiineeeeneeeeeeeeeeee e 1953
E.53.2. Changesc..ooeeiiiiieieiieeeeeeeee ettt 1954

E.54. Release 8.1.22 ...cuoiiiiieiiiiniieieteteeei ettt sttt ettt s s 1955
E.54.1. Migration to Version 8.1.22........c.ccccoiiiiiiininiiiiicene e 1955
E.54.2. Changesc..cocoeiiiiiiiiiiiieeeceee e e 1955

E.55. RelEaSE 8.1.21 ..cviiiiiiiiiiiiieieeeetet ettt ettt s e 1956
E.55.1. Migration to Version 8.1.21ccccceoiririninenienieininenieneeeeeeeeiese e 1957
E.55.2. Changesc.ooiiiiiiiiiiiice e 1957

E.56. Release 8.1.20coueiiiiiiieieeiieeee ettt e sttt 1958
E.56.1. Migration to Version 8.1.20......cc.cccccueirininenienieininenenrcieieeeeeeee e 1958
E.56.2. ChANZESooviviiiieieieiieiteentestetetet ettt sttt sttt et 1958

E.57.RElease 8.1.19 ..ottt s 1959
E.57.1. Migration to Version 8.1.19.......cccccoviiriniiiiniinieieneeteneeeeeseeee e 1959
E.57.2. CHANEZES ..ottt sttt sttt st 1959

XXXVI

E.58. Release 8.1.18 ..o e 1960
E.58.1. Migration to Version 8.1.18........coceriiiriiieriinieeieeiieeieeie et 1961
E.58.2. ChanGEs ...cccueevuiiiiieiieiie ittt ettt ettt st ettt e e s saees 1961

E.59. Release 8.1.17 ...ccoiiiiiiiiiiiiiiiccici s 1962
E.59.1. Migration to Version 8.1.17.......ccooueriiiiiiiniinieiieeniteeeeie et 1962
E.59.2. Changesc.ooeeiiriieieiieieteeieetet ettt e e 1962

E.00. REIEASE 8.1.16 c..cviniiniiiiiiiiriiieieietet ettt ettt s s 1963
E.60.1. Migration to Version 8.1.16........ccccocueviriiiiniiiiiiineeeeseeeeeseeee e 1963
E.00.2. Changesc..ccceeiuiiiieieiieiecteeieeee et 1963

E.01. Release 8.1.15 ...cuiiiiiiiiiiriiicctetet ettt ettt s e 1964
E.61.1. Migration to Version 8.1.15........ccccooiiiiiiiiiiiiiiceeeeceeeee e 1964
E.01.2. CRANEESeoverviriieieieiieiteiertentetet ettt sttt sttt 1964

E.62. Release 8.1.14 ..ottt ettt sttt et 1965
E.62.1. Migration to Version 8.1.14......cc.cccccuririninenienieiiinenentereeeeeeeee e 1965
E.02.2. ChANZESeovirviriieieieiieiieieste ettt ettt sttt st sae sttt be e b e 1965

E.03. Release 8.1.13 ...ttt ettt 1966
E.63.1. Migration to Version 8.1.13cccccccirininininiiiieineneeeeeeeeeeee e 1967
E.03.2. CHANEZES ...eouviiienieitieeteete ettt st ettt ettt et 1967

E.04. Release 8.1.12 ...cc.couiiiiiiiiiiieicicteteercee ettt s s 1967
E.64.1. Migration to Version 8.1.12.....c.ccccerviiviririiniinienieneeenieeeeiesieeeee e 1967
E.04.2. CHANEZES ...eoviiieniiiieeiteieeiteeete ettt sttt ettt 1967

E.05. Release 8.1.11 ...ccuiiiiiiiiiiiiiiicceeecee et s 1969
E.65.1. Migration to Version 8.1.11....cccccoeriiriniiiininiiiinceieniceceeeccece e 1969
E.05.2. CHANZES ...eovieiiieiieiieiie ettt sttt ettt ete ettt e st e sabeebaesasessteenbeenanesnnes 1969

E.06. Release 8.1.10cocoiiiiiiiiiiiiiiieiiiiccc et 1971
E.66.1. Migration to Version 8.1.10........ccccceeiiirriienieniiieieenieerecie et 1971
E.06.2. CHANZES ...covieieiiiiieiieiie ettt sttt ettt sttt e sba e st e st e e baesstesateenbeenanesnnes 1971

E.07. Release 8.1.9ccooiiiiiiiiiicictcc e 1972
E.67.1. Migration to Version 8.1.9.........ccecuveiiiriiiniinieeieeteeeee et 1972
E.67.2. CHANZES ...eovieiiiiieeiieite ettt sttt ettt ettt ettt e be e st e st e e b e saeesaees 1972

E.608. Release 8.1.8cc.oiiiiiiiiicic s 1972
E.68.1. Migration to Version 8.1.8.........ccovieriiiiiiinienieeieeiieeeeeie et 1973
E.68.2. CHANZES ...ccviiiuiiiiieiieiie ettt ettt ettt ettt e e e saees 1973

E.69. RelASE 8.1.7 ..ottt sttt et st 1973
E.69.1. Migration to Version 8.1.7.......ccccocirveviriiiieninieiineeeeneeeeeseeeeee e 1973
E.00.2. Changesc..coeeiiiieieiieieeteeieeee ettt 1973

E.70. REIEASE 8. 1.6 ..couniiiiiiiiiiieeieeeeiteete ettt ettt et sttt e 1974
E.70.1. Migration to Version 8.1.6.......ccccoccoviiviiiiiiiniiieieececeeeceeeeeee e 1974
E.70.2. Changesc..oouiiiiiiiiieiieeee et 1974

E. 71 RELEASE 8. 1.5 .ottt ettt sttt et 1975
E.71.1. Migration to Version 8.1.5.....c..cccoeririninineneieieeneniesteteeeeeeeieee e 1975
E.71.2. Changesc.ooueeiiiiiiieiic e e 1975

E.72.ReICASE 8. 1.4 ..ottt ettt et st b et 1976
E.72.1. Migration to Version 8.1.4........ccccceeuririminenenieiiinenentereeeeeeereeve e 1976
E.72.2. ChANEES «.ueoveiiiiieieicieiteeste sttt ettt st 1976

E.73.Release 8.1.3 ..ottt e s 1978
E.73.1. Migration to Version 8.1.3......cccccoiriiriniiiiniieiee et 1978
E.73.2. CHANEZES ..ottt sttt sttt et 1978

XXXVID

E.74.

E.75.

E.76.

E.77.

E.78.

E.79.

E.80.

E.81.

E.82.

E.83.

E.84.

Release 8.1.2 ..o 1979
E.74.1. Migration to Version 8.1.2......c..ccevueriiirniienienieeiienieetesie ettt 1979
E.74.2. CHANZES ...eoveiiiiiieeiteite ettt ettt ettt ettt ettt e beesaeesaees 1979
Release 8.1.1 .cc.oiiiiiiiii s 1980
E.75.1. Migration to Version 8. 1.1ccccevieriiiiiiiniinieiieeteeeeeie et 1981
E.75.2. ChaNEES ...oouviiieiiiiieeieteeeeeetet ettt e e 1981
REICASE 8.1 .ottt sttt sttt st et 1982
E.76.1. OVEIVIEW .eueiiiiiiiieiieite ettt ettt ettt et et st e s e 1982
E.76.2. Migration to Version 8.1.........cccccoiiiiiiiiiiiiiniiiieieeeeeneeeceseeeeee e 1983
E.76.3. Additional Changescc.coceeceririenieniiienieeee et 1986
E.76.3.1. Performance Improvementsc..cocoecenieiiiniiniicncieenenecieiene 1986
E.76.3.2. Server Changesc..ccceouieiiiiiiiiiieiiiicieeceie e 1987
E.76.3.3. Query Changes.........c.ccooveouiiiiiiiniiiieiiiicieneeeeie e 1988
E.76.3.4. Object Manipulation Changesccccoveceeerrenerenenieennenenenennene 1988
E.76.3.5. Utility Command Changes..............coeeverveeeinenenieneenieenenenenennene 1989
E.76.3.6. Data Type and Function Changesc.cccceceeveverenveiecenveninenennene 1990
E.76.3.7. Encoding and Locale Changes...........ccccceceeireneneniecienenneninenenene 1991
E.76.3.8. General Server-Side Language Changes..........cccccoceevereenenenienienne 1992
E.76.3.9. PL/pgSQL Server-Side Language Changes.........c..ccocevveeverenueniene 1992
E.76.3.10. PL/Perl Server-Side Language Changes...........ccccevereerienenuenienne 1993
E.76.3.11. pSQl Changescccuevuerieiiniieienieeteesteestcetee et 1993
E.76.3.12. pg_dump Changes............ceceevuereeeenenienienieeienieneeniesieeiesiesnenienne 1994
E.76.3.13. libpq Changesc.ccecuevieeeenienenienienieienieeteieeieesee et 1994
E.76.3.14. Source Code Changesccccceveeveererienienieienieneeneseeiesiesnenienne 1995
E.76.3.15. Contrib CRangesccceeveeriieriienieniesieeieeniee e eieesieesenesveeaeens 1995
Release 8.0.26 ..ot e 1996
E.77.1. Migration to Version 8.0.26........c.cceevuerriieniieiieniiieniieeieeie e steste e saee e 1996
E.77.2. CHANZES ...eonvieiiieieeiieite ettt ettt ettt ettt e e et e sateebeenaeesanes 1997
Release 8.0.25 ..o e 1998
E.78.1. Migration to Version 8.0.25........coceeiiiriiierienieeieeniteeteeie et 1998
E.78.2. CHANZES ...eevieiieiiieiieiie ettt ettt ettt et st e e e e i 1998
Release 8.0.24 ... 1999
E.79.1. Migration to Version 8.0.24........ccceoveiiiiniiniieiiieniteeieeieeiee ettt 2000
E.79.2. ChaNEEScuvieieeiirieeieieeeeteetet ettt 2000
Release 8.0.23 ...ttt st et 2001
E.80.1. Migration to Version 8.0.23........c..ccceviiiriiniiiieineeeereeeeeeeeeeee e 2001
E.80.2. ChanEesc..eeueeiiiieieiieieeteeieeee et e 2001
ReIase 8.0.22 ..ottt st et 2002
E.81.1. Migration to Version 8.0.22........c..cccoiiiiiiiiiiiiiiiiiicicne e 2002
E.81.2. ChanGEs ...cccueeiuiiiieiiieiee ettt ettt ettt et 2002
ReIase 8.0.21 ..ot s 2003
E.82.1. Migration to Version 8.0.21ccccoooiiiiiiriiniiiiei e 2003
E.82.2. ChaNES ...ceoveiruiiiieeieeite ettt sttt st e 2003
RE1EASE 8.0.20 ...ttt ettt st 2004
E.83.1. Migration to Version 8.0.20........ccccoceereriiieniinieiinieeene et 2004
E.83.2. CHANGES ..ottt sttt ettt 2004
Release 8.0.19 ..o e 2005
E.84.1. Migration to Version 8.0.19........ccccovieviiiiiieniniiniineeeneeeeeseeee e 2005

XXXVIii

E.84.2. ChANZES ...eovieeiiiiieiieiie ettt sttt ettt ettt sttt et e sate e b e saeesanes 2005

E.85. Release 8.0.18 ..o 2006
E.85.1. Migration to Version 8.0.18........ccceeiiriiiniiniiiiieniieeteeie et 2006
E.85.2. ChANZES ...eouviiiieiiieiteiie ettt ettt ettt st ettt e e saees 2006

E.86. Release 8.0.17c.ccciiiiiiiiiiiiiiciiiic s 2007
E.86.1. Migration to Version 8.0.17........c.ccoceviririiininienineeeneeeeeneeeee e 2007
E.86.2. ChaNGESccvieuieniiriieieiieeeteeeete ettt 2007

E.87. Release 8.0.16 ...c.coucueuiriiiriiiiicieeeitettsestetetet ettt ettt s 2007
E.87.1. Migration to Version 8.0.10........c..ccceviriiiiiiiniiiiieeeneceeeeeeee e 2007
E.87.2. Chan@esceoeuiiiiiiiiieiieeee e e 2008

E.88. Release 8.0.15 ...cueiiiiiiiiiriitectetet ettt s e 2009
E.88.1. Migration to Version 8.0.15......cccceoiririnineneniiiiineneeeeeeeeeeee e 2009
E.88.2. Changesc..ooueiiiiiiiiiiiieece e e 2009

E.89. Release 8.0.14 ..ottt ettt ettt et ettt 2011
E.89.1. Migration to Version 8.0.14......c..cccccuviriminineniiieineneeeeeeeceeee e 2011
E.89.2. Changesccooiuiiiiiiiiiiieii e 2011

E.90. Release 8.0.13 ...ttt sttt et st bttt 2011
E.90.1. Migration to Version 8.0.13.......ccoceriiriiiiiiiiiieeeeeee e 2012
E.90.2. CRANZES ..ottt sttt sttt e 2012

E.9T. Release 8.0.12 ..ottt s e 2012
E.91.1. Migration to Version 8.0.12........ccccoceeviririeninieniineeienieeeeeseeteee e 2012
E.OT.2. CHANEZES ..ottt st sttt 2012

E.92. Release 8.0.11 ...cc.ooiiiiiiiiiiiiiciceceeeeee e 2013
E.92.1. Migration to Version 8.0.11.......cccceeiuirriiiniieieiiienieereeieeiee e 2013
E.02.2. CHANGES ...eevieeiieiieiieiie ettt sttt ettt ettt et e st e et e enbeesatesnteenbeenaaesnnes 2013

E.93. Release 8.0.10cociiiiiiiiiiiiiiiiciicee e 2013
E.93.1. Migration to Version 8.0.10........ccccceevuirriiiniiniiiiiieniieeieeie et 2013
E.03.2. CHANZES ...eevieiieiiieiieite ettt sttt ettt ettt ettt s bt et esatesate e b enaeesanes 2014

E.94. Release 8.0.9 ..o 2014
E.94.1. Migration to Version 8.0.9.........cceceriiiriiiiniiniiniieniieeeeiteite e 2014
E.O4.2. ChanGES ...ccoueeiuiiiiieiieiie ettt ettt et ettt ettt e e i e i 2014

E.95. Release 8.0.8 ..o 2015
E.95.1. Migration to Version 8.0.8.........ccocueriiiiiiiniiniiniieriteeeeieeee st 2015
E.O5.2. ChaNGES ...cooveeuiiiiiiiteite ettt ettt ettt ettt e e e 2015

E.06. RelEase 8.0.7 ..couiiiieiiiiiteeieee ettt ettt sttt st e 2016
E.96.1. Migration to Version 8.0.7.......ccccoceovieririiiieninieieeeeeneeeeese e 2017
E.96.2. Changesc..coceeiiiiiiiieiieeeeeee et 2017

E.O7. RelaSE 8.0.6 ..ccueiiiiiiiiiieeieeeett ettt ettt sttt e 2017
E.97.1. Migration to Version 8.0.6..........ccccocueviiiiiiiiiiiiiiii e 2018
E.97.2. Changesc..cocoiiiiiiiieiiieee e e 2018

E.08. Release 8.0.5 ..ccueiiiiiiiiieeeetet ettt sttt st 2019
E.98.1. Migration to Version 8.0.5.....c..cceeueviririninenieieieenenenrereeeeeeeieee e 2019
E.98.2. Changescccooiiiiiiiiiiiiici e s 2019

E.99. RelaSE 8.0.4 ...ttt ettt sttt ettt b et 2020
E.99.1. Migration to Version 8.0.4........ccccceviririninenieniiininenesteereeeeeeee e 2020
E.99.2. ChANEESeoviviiiieieieiieiieierte sttt ettt sttt s 2020

E.100. Release 8.0.3 ..ottt s e 2021
E.100.1. Migration to Version 8.0.3........ccccoveririiieninienineetenieeeeeneee e 2021

XXXIX

E.100.2. CRANEES .eouveeviieiieeiieiie ettt sttt ettt ettt et e st st e be e st e sateebeesaaesanes 2022

E.101. Release 8.0.2 ..o e 2023
E.101.1. Migration to Version 8.0.2........coceevueiiiinienieeiieniieere ettt 2023
E.TOT.2. CRANEES .eouveiiieiieeiteiie ettt ettt ettt ettt et e st st e b e saee e 2023

E.102. Release 8.0.1 ...c.oiiiiiiiiiiiiiiicicicee s 2025
E.102.1. Migration to Version 8.0.1........c.ccoceriniiiininiininiceneceeeseeeee e 2025
E.102.2. Chanesco.ceviiiieieiieiieieeieeeee ettt et e 2025

E.103. REIEASE 8.0 ...eeniiiiieiiieiieeeee ettt ettt sttt st e 2026
E 1031, OVETVIEW ..einiiiiiiiiieitc ettt ettt ettt ettt e 2026
E.103.2. Migration to Version 8.0........ccccoccocieviiniiiininieiiniceere e 2027
E.103.3. Deprecated FEaturescccccceviiieiiniiiiniiiieeee e 2029
E.103.4. Changescoouiiuiiiiiiieieice e e 2029

E.103.4.1. Performance IMprovements.............coeeveceeuerenenieneeeeeeennenrenrennene 2029
E.103.4.2. Server Changesccceoeeierienieieniesieieeieee st eiee e 2031
E.103.4.3. Query Changes..........cccuerueeuieriinieieniesiieie sttt 2032
E.103.4.4. Object Manipulation Changesc..cccceveerienireeneneenieneeieniene 2033
E.103.4.5. Utility Command Changes............ccoceveerueneerienenieneneeieseeieniene 2034
E.103.4.6. Data Type and Function Changesccccecevereeneneenenenieniene 2035
E.103.4.7. Server-Side Language Changesccccceeeceenierieneneenenenienenne 2037
E.103.4.8. pSQl Changescccucouerieieniieiinieeieniestetesieete et 2038
E.103.4.9. pg_dump Changes.........c..ceceevuereeienenienienieeienieeeeniesieeiesiesieenieene 2038
E.103.4.10. libpq Changesccccceeeeevuenerienenieienieeienieeieenee et sieenenieene 2039
E.103.4.11. Source Code Changescocceveeruereenienieeienieneenieneeieniennenienne 2039
E.103.4.12. Contrib Changescc.ceceevuereerienenienienieeienieneenieseeieseenenieene 2040

E.104. Release 7.4.30cociiiiiiiiiiiicieiceeeee et e 2041
E.104.1. Migration to Version 7.4.30......cccceeveiriienieniieeiieeniieeieeieenieeste e eieesaee e 2041
E.104.2. CRANEES .eovveeeiieiieiieiie ettt sttt ettt ettt s e st et esatesateebeenaaesanes 2041

E.105. Release 7.4.29 ..ot e 2042
E.105.1. Migration to Version 7.4.29......cccceeceiiiinieeiieeiieeniieeteeie ettt 2042
E.105.2. CRANEES .eouveeiiiiieeiieiie ettt ettt ettt ettt e be e st esate b e saeesanes 2042

E.106. Release 7.4.28 ... s 2043
E.106.1. Migration to Version 7.4.28..........coceiiieniiriieniieeniieeieeie ettt 2044
E.106.2. CRANEES ..uveevieiieeiieiie ettt ettt ettt ettt et e beesaeesaees 2044

E. 107, REIEASE T.A.27 ..ottt ettt st st 2044
E.107.1. Migration to Version 7.4.27c.ccccccoeririeninenineerenieeeeeseeeene e 2045
E.107.2. ChAnGESooveeiiieeieieeeeeeeee et e 2045

E.108. REICASE 7.4.260 ...ttt sttt sttt s 2045
E.108.1. Migration to Version 7.4.26.........ccccccccoirviininieninieeneeeeceseeeeie e 2046
E.108.2. ChaNESocveeuiiiiiieieee et e e 2046

E.109. REIEASE 7.4.25 ..ottt sttt et st s 2046
E.109.1. Migration to Version 7.4.25.......ccccccevirimineneneinineneniesreeeeeeeesesae e 2047
E.109.2. Changesccciiiiiiiiiiiiiii e 2047

E.110. ReIEASE 7.4.24 ...ttt ettt e 2047
E.110.1. Migration to Version 7.4.24.........ccccoveiiieninieneeeee et 2047
E.TT0.2. CRANGES ..ttt ettt sttt sttt et 2047

E. 111 REIEASE 7.4.23 L.ttt ettt st s 2048
E.111.1. Migration to Version 7.4.23c.ccoceririiininieniseeteneeetee e 2048
E 1112, CRANGES ..nveieenieiiieiieieeiteeet ettt sttt 2048

xl

E 112, REIEASE T.4.22 oottt et et e et e e e esaare e e e eeanaeeeeenareeee s 2049

E.112.1. Migration to Version 7.4.22.......ccceeveeiienieeiieniieeniienie et enieesitesteenieesiee e 2049
E.112.2. CRANEES .eouviiiieiieeieeiie ettt ettt ettt sttt ettt et esaaesanes 2049
E.113.Release 7.4.21 ..o 2049
E.113.1. Migration to Version 7.4.21cccceeveiiiiniinieiieeniteeteeie et 2049
E.T13.2. Changescoeeiiiiieieieeieieeieeeee ettt et 2050
E 114 REICASE 7.4.20 ..ottt ettt ettt ettt eee 2050
E.114.1. Migration to Version 7.4.20......c..cccccoiiiriininieninieeneceeeseeeeee e 2050
E.114.2. ChanESooueeiiiiiieiieeceeee et 2050
E 115 REICASE 7419 ettt sttt s 2051
E.115.1. Migration to Version 7.4.19......c..ccccooiiiiiiiiiiiiccec e 2051
E 1152, CRANEES .uveiiiiiieeieeitc ettt ettt e 2051
E.116. REIEaSE 7.4. 18 ..ottt ettt s 2052
E.116.1. Migration to Version 7.4.18........ccccoiiiiiiinieiee e 2053
E 1162, CRANGESveveenieieeeiieieee ettt ettt ettt e nae e 2053
E 117 REICASE 7.4 17 ittt ettt s s 2053
E.117.1. Migration to Version 7.4.17cccoceririiinieeneeeeese e 2053
E 1172, CRANZES ..uveveeneeiieeieieeteeete ettt sttt sttt et nae s 2053
E.T18. REICASE 7.4 10 ...ttt sttt st s e 2054
E.118.1. Migration to Version 7.4.16......c..cccceveririieninienineeieneseeieseeeee e 2054
E 1182, CRANZES ...uveveeniiieeiieieeiteteeieee ettt sttt st 2054
E.T19. REIEASE 7415 oottt s s 2054
E.119.1. Migration to Version 7.4.15......cccovueriniiiininienineeieneeeeeseeeee e 2055
E.119.2. CRANZES ..cvveveiniiieeiieieeiteteeteetet ettt sttt st 2055
E.120. Release 7.4. 14 ..ottt 2055
E.120.1. Migration to Version 7.4.14cccoeoeivienieniieeiienteete ettt st 2055
E.120.2. CRANEES .eouveiviiiieeiieiie ettt sttt ettt ettt e st e sttt esatesateebaesaaesnees 2056
E.121. Release 7.4.13 ..o e 2056
E.121.1. Migration to Version 7.4.13ccocieiiiiiienieeieeieeriteete ettt 2056
B 121.2. CRANEES .eouvteeieeieeieeiie ettt ettt ettt ettt et s e e beesaee i 2056
E.122. Release 7.4.12 ..o e 2057
E.122.1. Migration to Version 7.4.12......ccceevueiiienienieeieeniteeeeeie ettt 2057
E.122.2. CRANEES .eouviiiiiiieeieeite ettt ettt ettt ettt e e e e 2057
E.123. ReIEASE 7oA. 11 ..ottt sttt et s 2058
E.123.1. Migration to Version 7.4.11......c..ccccooiiiiiininiininicecceeeeece e 2058
E.123.2. Changescc.ceoviiiieieiieiieieeieeeee ettt e 2058
E 124 ReEIEASE 7.4 10 ittt sttt sttt 2059
E.124.1. Migration to Version 7.4.10......c..cccccoiiiiiiiinininicceeeceeeeee e 2059
E.124.2. Changescc.coouiiiiiiiiiieieece e e 2059
E 125 REICASE 7.4.9 .ottt ettt s et 2060
E.125.1. Migration to Version 7.4.9.......c.cccccevririneneneinenenienresieeeeeeeese e seenee 2060
E.125.2. CRANGES -...veveeieieeeteee ettt et sttt st nee s 2060
E.126. REICASE T.4.8 ...ttt ettt sttt nae et et be et 2060
E.126.1. Migration to Version 7.4.8........cccceciereririenieienie ettt 2061
E.126.2. CRANGESvevienieieeieieeieeete ettt sttt sttt nae s 2062
E 127 REICASE 747 .ttt sttt st s e 2063
E.127.1. Migration to VErsion 7.4.7cccceveriiirieninieneeeetenieetee e 2063
E.127.2. CRANZES ..uveveenieiiieiieieeiteeee ettt sttt st 2063

xli

E 128, REIEASE T.4.0 ..uveeeeeeieeeee ettt eeetae e e et e e eeaar e e e e eetaaeeeeenareeee s 2064

E.128.1. Migration to VErSion 7.4.6.......ccocueeiueriiienieeieeieeniieete ettt st 2064
E.128.2. CRANEES .eouveevieiiieieeite ettt ettt ettt ettt e e e i 2064
E.129. REIEASE T.4.5 ..ottt ettt et st ne e 2065
E.129.1. Migration to VErSion 7.4.5....cc.cooiiriiiiiinieeieeieesiteete ettt sttt 2065
E.129.2. Changescocovviiiieieiieiieieieeeee ettt et e 2065
E.130. REICASE 744 .ottt et s 2065
E.130.1. Migration to Version 7.4.4........c.ccoceviririininienieeeeeneeeeeseeeeee e 2066
E.130.2. Changesc.cooviiiiiieiieiecieeeeee et 2066

E 131 REICASE 7.4.3 .ttt ettt s s 2066
E.131.1. Migration to VErsion 7.4.3.......ccoiieiiiiiiniieienieeniteete ettt 2066
E.131.2. CRANEES .euveiiiiiieeiieiee ettt ettt sttt st et 2067
E.132. REICASE T.4.2 .ottt ettt st b ettt et nae et et be et ene 2067
E.132.1. Migration to Version 7.4.2.......cccceeveriiieieniieiene et 2067
E.132.2. ChANEES «.c.veoviiiieieiciieiieertesteteet ettt st s 2069

E 133, REICASE 7.4 1 ettt ettt sttt ettt be et eae 2069
E.133.1. Migration to Version 7.4.1cccoceeviriniiiiniiieneeeeee e 2069
E.133.2. CRhANGESveeveeeiiieeiieieeiteeete ettt sttt e 2070
E.134. REICASE T4 ...ttt ettt sttt ettt st b et e e 2071
EL134.1. OVEIVIEW ..ottt ettt et sttt e 2071
E.134.2. Migration to VEIsion 7.4cccceviiiineninieniiniteniesieetenie sttt 2073
E.134.3. CRaN@ES ..c.veoveeieiieeiieieeiteteeteetese ettt sttt et 2074
E.134.3.1. Server Operation Changescc.ccoceveevieneecieneneeneneenenennenienne 2074

E.134.3.2. Performance IMprovementsccoecvervveenieeneenieenieeneesvesveeneens 2075

E.134.3.3. Server Configuration Changesccceceevueeneerieenieeneenvesieenieens 2076

E.134.3.4. QUErY CRAnEES......ccecuteruieriieriieiieritenitesteeieeniee e ereesieeseresveeeeens 2077

E.134.3.5. Object Manipulation Changescceeeveerueeneerieenieeneeneeesieenneens 2078

E.134.3.6. Utility Command Changes...........cccccevvervveerieeneenieenieenieesresveeieens 2079

E.134.3.7. Data Type and Function Changescccccevveerierneeneenvessieennens 2080

E.134.3.8. Server-Side Language Changesc.cceeveeveerieenieeneenvenseeenieens 2082

E.134.3.9. pSQl Changesccecueeiieniieniieieeieente ettt st 2082
E.134.3.10. pg_dump Changes...........cccecuerrieerienierieenieeneesieeieesiee e eveeieens 2083
E.134.3.11. Ibpq Changesccceerueeriersiieriienienieeieeiee e 2083
E.134.3.12. JDBC Changes........cccccveeeeruenieienienieienieereteeeesaeseenesieeneneene 2084
E.134.3.13. Miscellaneous Interface Changesc..cccccevvceenineencnencieniene 2084
E.134.3.14. Source Code Changescccceceeruereecienieieniineenieneereseeneeene 2085
E.134.3.15. Contrib Changescc.cccecerieieninieienieieie e 2085

E 135 REICASE 7.3.21 ittt sttt ettt s e 2086
E.135.1. Migration to Version 7.3.21......c..cccoiiiiiiiiiiiiiiccececeeeee e 2086
E.135.2. CRANEES .euveiiiiiieeieeite ettt ettt st et 2087
E.136. RelEase 7.3.20 .c..cucieiiiiiriiicicieteitetentestetee ettt ettt s e 2087
E.136.1. Migration to Version 7.3.20......c.cccceriririeninieneeeeesie e 2087
E.136.2. CRANGES -...veveenieiieeieieee ettt ettt ettt et nee e 2088
E.137. ReIRASE 7.3.19 .ottt s e 2088
E.137.1. Migration to Version 7.3.19.......ccccccevirimineneniiiinineneieeeeeeeesesieseenen 2088
E.137.2. CRANZES ...uveieeieeieieeteeeteet ettt sttt et 2088
E.138. ReIEASE 7.3.18 ..ttt sttt ettt e st sb et 2088
E.138.1. Migration to Version 7.3.18......ccccoceriiiiiininienineeeneeeeeeeee e 2089

xlii

B 138.2. CRANEES .ecuvteviieiiieiieiie ettt ettt ettt ettt ettt e sate e b e saaesaees 2089

E.139. Release 7.3.17 oot 2089
E.139.1. Migration to Version 7.3.17coceeieriiiniinieeieeniteeteeie ettt 2089
E.139.2. CRANEES .ecuvtiiieiiieiieiie ettt ettt ettt sttt et st e e e sanes 2089

E.140. Release 7.3.160ccccuiiiiiiiiiiiiiiiiiiccec e 2090
E.140.1. Migration to Version 7.3.16......c..cccccoeririiininiieninieicneeeceseeeee e 2090
E.140.2. Changescccooviiiieieiiiieieeieeeee ettt et e 2090

E 141 ReIEASE 7.3.15 ottt s et 2090
E.141.1. Migration to Version 7.3.15......ccccociiiiiiiiiiiiiceeeceneece e 2090
E.141.2. Changescccoouiiiiiieiieeieee e 2091

E.142. REIEASE 7.3.14 .ottt ettt ettt s e 2091
E.142.1. Migration to Version 7.3.14........cccooiiiiiiiiiiiiiicceceece e 2092
E.142.2. Changesc.coouiiiiiiiiiice e e e 2092

E.143. Release 7.3.13 .ottt sttt b e st s e 2092
E.143.1. Migration to Version 7.3.13.......cccccevirimineniniininenenreiereeeeeese e 2092
E.143.2. ChANEES «...veoviiiieieieiieiteerestcteet ettt st 2092

E.144. REILASE 7.3.12 oottt sttt s s 2093
E.144.1. Migration to Version 7.3.12......cccociriiiiiininienieeeeeeeteeseee e 2093
E.144.2. CRANGESveveeniiieieiieieeeteeete ettt st sttt et 2093

E.145. REIEASE 7.3.11 ottt s e 2094
E.145.1. Migration to Version 7.3.11.....cccccoviiniriiiininiiniineeenceceneeee e 2094
E.145.2. CRANZES ..uveiienieieeiieieeiteeeteees ettt sttt 2094

E.146. Release 7.3.10cocoiiiiiiiiiiiiicicicttieeeet ettt s 2094
E.146.1. Migration to Version 7.3.10......c.ccoceveniiiiininiininciieneeeeneetceeceee e 2095
E.146.2. CRANEES ..ouveeieiiiiieiieiie ettt ettt ettt ettt et s e st e beesatessteenbaenaaesnnes 2095

E.147. Release 7.3.9 ..ot e 2096
E.147.1. Migration to Version 7.3.9.......ccoviriiiiiiiniieieeieeteeeeie ettt 2096
EL147.2. CRANEES .eouveivieiieeiieiie ettt ettt ettt ettt ste b e st esateebeenaaesanes 2096

E.148. Release 7.3.8 ...cooiiiiiiiiiiiiicectee e 2097
E.148.1. Migration to Version 7.3.8.......ccoceriiiriienienieeieeniteete ettt 2097
E.148.2. CRANZES ..cuveeiieiiieiieite ettt ettt et st ettt e esaee i 2097

E.149. ReleaSe 7.3.7 c..oviiiiiiiiiiiiiiccceeeee s 2098
E.149.1. Migration to VErsion 7.3.7 ...cccccouirieriienieeieeieesiteeteete ettt 2098
E.149.2. Changesccccoouiiiieieiiiieieeieeeee ettt s 2098

E.150. REICASE 7.3.60 ettt sttt ettt s e 2098
E.150.1. Migration to VEersion 7.3.0........cccceceviririieniinieineeeese e 2098
E.150.2. Changescc.ceouiiiieieiiieieeieeee e e 2099

E 15T REICASE 7.3.5 oottt ettt s e 2099
E.151.1. Migration to Version 7.3.5......ccccccooiiiiiiiiiiiiiiiieeee e 2099
E 1512, Changescccoiiiiiiieiieec e e 2099

E 152 REICASE 7.3.4 .ttt sttt st e 2100
E.152.1. Migration to Version 7.3.4cccceeiiriiirieneeiee e 2100
E.152.2. CRANGES -.uveveeneeieeeieteee ettt sttt sttt et ee s 2100

E.153. ReIEaSE 7.3.3 .ottt sttt et st b et 2101
E.153.1. Migration to Version 7.3.3ccociriiririiieniieiee et 2101
E.153.2. CRANZES ..uveveeneiiieeieieeeteeete ettt ettt st 2101

E 154 REICASE 7.3.2 .ottt ettt s 2103
E.154.1. Migration to Version 7.3.2.......ccocceviereririeninienieneeienieeeeiesie e 2103

xliii

E.154.2. CRANEES .eouvteiiiiieeiieiie ettt ettt ettt et e st esate e b e saaesanes 2104

E.155. Release 7.3.1 oo s 2105
E.155.1. Migration to Version 7.3.1....ccccovvieiiiiieniinieeieeniteete sttt 2105
EL155.2. CRANEES .ecuviiiiiiieeiieite ettt ettt ettt st ettt e e e 2105

E.156. REIEASE 7.3 ..o s 2105
E.156.1. OVEIVIBW ..ottt et 2106
E.156.2. Migration to VErsion 7.3cccccocirviereniriieninieienc et 2106
E.156.3. Changescccoouiiiiieiiieieieeiieeeee ettt 2107

E.156.3.1. Server Operationccccoceecuerieiienienienieneeieie e e 2107
E.156.3.2. PerfOrmancecocueevueerieniiiieeiiente ettt 2107
E.156.3.3. Privile@es.ccuoouiiiiiiiiiiiieiieieicece e 2108
E.156.3.4. Server Configuration...........ceceeeereererierieniieienieece e seeee e eeeeene 2108
E.156.3.5. QUETICS ..cuvveeeiieiieeiiecie ettt eie ettt ieesve e e e e eveesteeseveensaenneens 2109
E.156.3.6. Object Manipulationccceeeeienierienieniieienie e 2110
E.156.3.7. Utility COMMANGSccveiiierieiiniieienieeiieieeieeie e 2111
E.156.3.8. Data Types and FUNCtions............cccoceeeerienieiienencene e 2112
E.156.3.9. InternationaliZationcoceevuereeienierienienieeienie e 2113
E.156.3.10. Server-side Languagescccceouererierienieeieniniene e 2113
E.156.3. 11, PSALuuiiiiiiiieiiiiencceet ettt 2114
E.156.3.12. 1IDPQ wviieieieiieiieiiieneceecee ettt 2114
E.156.3.13. JDBC ...ttt 2114
E.156.3.14. Miscellaneous Interfaces...........coceevevveieinincnicnicieineninciene 2115
E.156.3.15. SoUrce Code.......cooveriiiiiiiiiniiniiieieicieeieese et 2115
E.156.3.16. CONLLID «..cveiiiiiiiiinieiictceieeteceeee sttt st 2117

E.157. REIEASE 7.2.8 ..ot 2117
E.157.1. Migration to Version 7.2.8........coceerueriiienieeieeieeniieereeieenieesteseeeeseenanesnees 2118
EL157.2. CRANEES .eouviiiiieiieiieiie ettt ettt ettt ettt et esatesate e beenaaesnnes 2118

E 158 REICASE 7.2.7 .ottt e 2118
E.158.1. Migration to VErSion 7.2.7ccceevueerieriienieeieeieesiteete ettt 2118
B 158.2. CRANEES .ecuvieiiiiieeiieite ettt ettt ettt ettt ettt e be e esaees 2118

E.159. REIEASE 7.2.6 ..ot s 2119
E.159.1. Migration to VErsion 7.2.6.......ccocueeueiiiieniinienieeniieeteeie ettt 2119
E.159.2. CRANEES ..uvtiiiiiiieieeite ettt ettt st ettt 2119

E.160. REIEaSE T.2.5 ..ottt et sttt st st 2120
E.160.1. Migration to Version 7.2.5......c.ccccoceviririieninieniineeeeneeeereseeeene e 2120
E.160.2. Changesccouiiuieieiiiieieeieeeere ettt e 2120

E 101, REICASE 7.2.4 ..ottt sttt sttt s 2120
E.161.1. Migration to Version 7.2.4........c..cccccviiiiiiininienineeeeseeeeeseeeeee e 2120
E.161.2. CRANEES .cuveiiiiiieeiieite ettt ettt ettt e 2121

E.162. REILASE 7.2.3 ..ottt sttt ettt s et 2121
E.162.1. Migration to Version 7.2.3.......ccocieriiiiririenieeiee e 2121
E.162.2. CRANEES .cuveiiiiiieeiieite ettt ettt ettt e 2121

E.163. REICASE 7.2.2 ..ttt ettt sttt e st b et eae 2121
E.163.1. Migration to VErsion 7.2.2.......cccceeciereririeniieienieeieete et 2122
E.163.2. CRANGESveveeneeiieiieieei ettt sttt sttt et e 2122

E 164, REICASE 7.2.1 .ottt s e 2122
E.164.1. Migration to Version 7.2.1cccoccvviiriniiiininieneneeeneeeeeseee e 2122
E.164.2. ChANGESooveeieiieiieieeiteesieete ettt sttt 2123

xliv

E 165, REIEASE 7.2 ...ttt e et e et eeeeaare e e e eetaaeeeeeeareaee s 2123

E.165.1. OVEIVIBW ..ottt ettt et 2123
E.165.2. Migration to VErSION 7.2......cooctiriiriieiiiieniieeieeieenite ettt st st 2124
EL165.3. CRANEES .euveiiieiieeiieite ettt ettt ettt ettt e b e sae e i 2125
E.165.3.1. Server OPerationccccceerierrieenieenienieeieeniee e eieesieesieeeseeeeens 2125

E.165.3.2. Performancecoccecueeueeeeiiinieienenieienieeeete e e 2125

E.165.3.3. PrivIIEEES.....cccviruieiiiiiieiieiiceeeceeee ettt 2126

E.165.3.4. Client AuthentiCation..........coceevueereereerieenieeneenieereesee e eeeeieens 2126

E.165.3.5. Server Configuration...........ccceeeevienierienienieieniieeeie e 2126

E.165.3.6. QUETICSeveeeiiieeiee ettt et et eae e s e e et eeenteeesnbeeensseeennns 2126

E.165.3.7. Schema Manipulationccccoeiiiieiiininiiiniiienc e 2127

E.165.3.8. Utility COMMANGScc.eeiteerieiinieeienieeieie ettt eee e 2127

E.165.3.9. Data Types and FUncCtions.........c..ceceevevveeeineneneniecienenenenenennene 2128
E.165.3.10. InternationaliZationccceceeeeruerienienienieneecenee e sveeeeeeae 2129
E.165.3.11. PL/PESQL ..ot 2129
E.165.3.12. PL/PEIL ..ottt 2130
E.165.3. 130 PLITCL ottt st 2130
E.165.3.14. PL/PYHON ..ottt 2130

B 165.3.15. PSQLatiiieiiiieie ittt et 2130
E.165.3.16. 1IDPQ c.eveniiiieiiieeieiceteeeteese ettt 2130
E.165.3.17. JDBC ..ottt st 2131
E.165.3.18. ODBC ...ttt st 2132
E.165.3.19. ECPG ..ottt 2132
E.165.3.20. MisC. INteIfaces.cocuevuerieiiniriiniinieicnieetciceccee et 2132
E.165.3.21. Build and Install..........cc.coceeviiniiniininiiniininicicneenc e 2133
E.165.3.22. S0UIce COde.....cceeruiriiiiiniieiinieienienteienieetete ettt 2133
E.165.3.23. CONLLID «..ooveiiiiiieienieeicieecccecetce sttt 2133

E.166. REIEASE T.1.3 ..ottt sttt s st ne e 2134
E.166.1. Migration to Version 7.1.3.......ccooiriiiiiiniinieeieeriteeie ettt 2134
E.166.2. CRANEES ..cuveeviiiieeiieiie ettt ettt ettt st e be e st e st e b e saaesaees 2134
E.167. REIEASE T.1.2 ..ottt sttt s st 2134
E.167.1. Migration to Version 7.1.2.......cceceeieiiieniinieeieeniteete ettt 2135
E.167.2. CRANEES ..uveeiieeiiieieeite ettt ettt ettt et ettt e e s 2135
E.168. REIEASE T.1.1 ..ottt sttt e s 2135
E.168.1. Migration to Version 7.1.1.....cc.coccociiiiiiiininiiiniceececeecce e 2135
E.168.2. ChanEsccueoviiiiiieiiiecieeee e 2135
E.160. REIEASE 7.1 ..ottt ettt sttt e 2136
E.169.1. Migration to Version 7.1cccccocieiieiiiiiiiininiiinieeene e 2136
E.169.2. Changescoouiiiiiiiiiiieieeee e 2136
E.170. Release 7.0.3 ...ttt ettt sttt ettt nae et et b et ene 2140
E.170.1. Migration to Version 7.0.3.......cccciroiiiiriiienieiee e 2140
E.170.2. CRANEES .uveeiiiiieeieeite ettt ettt ettt e 2140

E 171, ReIEASE T.0.2 ..ottt ettt sttt e st sb et 2141
E.171.1. Migration to Version 7.0.2.......ccccceceririiieninieneeieeesee et 2142

E 1712, CRANGES ..ottt sttt et 2142

E 172, ReIEASE T.0.1 .ottt ettt st st b et e e 2142
E.172.1. Migration to Version 7.0.1.......ccoccoviiniiiiiininiiineeneeeeeeeee e 2142

E 1722, CRANZES ..cuvevienieiieeiieieeiteeee ettt sttt ettt et 2142

xlv

E 173, REIEASE 7.0 ...eevveieieeieeeee ettt e e et e et e e eeeaareeeeeetaaeeeeenareeee s 2143

E.173.1. Migration to Version 7.0.......ccccevvueeiieiriienienieeieeniteeteeie ettt 2143
EL173.2. CRANEES .eouviiiiiiiieieeie ettt ettt ettt et sttt et st e e e e s 2144
E.174. Release 6.5.3 ..o s 2150
E.174.1. Migration to Version 6.5.3.......ccooieiiiiiiiniinienieeriteeteee et 2150
E.174.2. ChANGESooveeiiiiieieieeeeeeeeee ettt e e 2150

E 175 REICASE 6.5.2 ..ottt sttt ettt s e 2150
E.175.1. Migration to VEersion 6.5.2........cccccceviiririieniinieninieeneeeeeseeeeee e 2151
E.175.2. ChANGES ... 2151
E.176. REICASE 6.5.1 ..cuviniiiiiiiiriiiiitctctetet ettt ettt s e ee 2151
E.176.1. Migration to Version 6.5.1........c..coccooiiiiiiiiiiiiiiceceeec e 2152
E.176.2. CRANEES .uveeiiiiieeiieiee ettt ettt ettt e 2152

E 177, REILASE 0.5 ...ttt ettt sttt ettt et e e et sbeenee e ene 2152
E.177.1. Migration to VErsion 6.5........cccoociiiiiiiiiiiieniieiee et 2153
E.177.1.1. Multiversion Concurrency Controlcecceverceenineenienensieninne 2154

E.177.2. CRANZES ..ottt sttt s ee s 2154

E 178, REICASE 0.4.2 ..ttt sttt et st sb e te e 2157
E.178.1. Migration to VErsion 6.4.2........c.ccecereririeninienieneeiesie et 2158
E.178.2. CRANGESveveenieiieeiieieeiteeeteee ettt sttt e 2158
E.179. REICASE 6.4.1 ...ttt s e 2158
E.179.1. Migration to Version 6.4.1........ccccoceveniniiniinienineeienceeeeseeeeece e 2158
E.179.2. CRANZES ..uveieeneeiieeiieieeiteeteee ettt sttt 2158
E.180. REICASE 6.4 ...ttt s 2159
E.180.1. Migration to VErsion 6.4ccoccevuereririeniinieniineeienieseenesieetenie e 2160
E.180.2. CRANEES ..ouveevieiiiieiieiie ettt sttt ettt ettt e st e st ebeesatessbeenbeenanesnnes 2160
E.I81. REIEASE 6.3.2 ..ttt 2164
E 18T 1. CRANEES .eouvieiieeiiieiieiie ettt sttt ettt et ettt e st esatesate e beesaaesanes 2164
E.182. Release 6.3.1 ..ottt e 2165
E 182, 1. CRANEES .oouvieviiiieeiieiie ettt ettt ettt ettt et e st e sate e b e saeesanes 2165
E.183. RElEaSE 6.3 ... e 2166
E.183.1. Migration to VErsion 6.3c..ccovueriieiiiienienieeieeniteete ettt 2167
E.183.2. CRANEES .eouviiiieiiieeiieite ettt ettt ettt ettt 2167
E.184. Release 6.2.1couciiuiiiiiiiiiiiiiiiccc s 2170
E.184.1. Migration from version 6.2 to version 6.2.1.......c..ccecuevviiinieniieniienneeneennne. 2171
E.184.2. ChanEScoueeiiiiieieiieieeteeeee et e 2171
E.I185. REIEASE 6.2 ...cneeiiieiieiteeeeeett ettt ettt sttt st ae e 2172
E.185.1. Migration from version 6.1 to version 6.2...........ccccccceeerveeienincicnineennene. 2172
E.185.2. Migration from version 1.x to version 6.2ccccceevvveiiniecienineenncne. 2172
E.185.3. Changesccucoiiiiiiieiiieiece e e e 2172
E.186. ReIEASE 0. 1.1 ..ottt ettt ettt e st beente e ene 2174
E.186.1. Migration from version 6.1 to version 6.1.1........cccoceniriiininiiincee 2174
E.186.2. CRANGES -...veveeeeeieeieiteee ettt st ettt st nee s 2174
E.187. REICASE 0.1 ..ottt ettt ettt et st bt eae 2175
E.187.1. Migration to Version 6.1ccccoceeoieririiieniiieeeeeene e 2175
E.187.2. CRANGES ..ottt ettt sttt et 2176
E.188. REICASE 0.0 ..ottt sttt et sttt 2178
E.188.1. Migration from version 1.09 to version 6.0.........c..ccccevervienenenviinencenene. 2178
E.188.2. Migration from pre-1.09 to version 6.0c.cccceveevenenienenennienienceee 2178

xlvi

EL188.3. CRANZES ..cuvteviieiiieiieiie ettt ettt et ettt e be et esate e b e saaesaees 2178

E.189. Release 1.09c.ooiiiiiiiiiiiiiiciiccc e 2180
E.190. Release 1.02 ..o e 2180
E.190.1. Migration from version 1.02 to version 1.02.1.......cccccoccovveiininciininienncnne. 2180
E.190.2. Dump/Reload Procedurec.ceevueeriierienieniieeniieeieeieeieeste e 2181
E.190.3. Changescccooueruieieiiirieienieetee ettt et e 2181

E 191, ReIEaSE 1071 .uviiiiiiiiieiiiieriiececeet ettt s s 2182
E.191.1. Migration from version 1.0 to version 1.01.........cccccccooiiiiiiniiiininee. 2182
E.191.2. Chanescoueoiiiiieieiieeeece e 2184
E.192. REIEASE 1.0 ...einiiiiiiiiieiieeeee ettt ettt sttt e 2185
E.192.1. Changesccucoiiiiiiiiiiieeee e e e 2185
E.193. Postgres95 Release 0.03 ..ot 2186
E.193.1. Changesc.coouiiiiiiiiiiiciece e e 2186
E.194. Postgres95 Release 0.02........ccoouiiiiiiiiiiiiiiii i 2188
E.194.1. CRANEES «...veoviiiieieieieeiieientestctcet ettt st s s 2188
E.195. Postgres95 Release 0.01.......ooouiiiiiiiiieieiieiee et 2189
F. Additional Supplied MOAUIEScoieieriiiieierieteeet ettt ettt s 2190
FoL @dMINPACK......oouiiiiiiiiieieeiee ettt sttt st st b et 2190
F.1.1. Functions implemented.............ceceririeneniinieniniene et 2191

F2. QUEO_EXPIaANN...ctiiiiiiiiieeiiee ettt sttt 2191
F.2.1. Configuration Parameters.cocuererieruerierienieneenienieeteniesieesiesseeseeneesseensenees 2191
F2.2. EXAMPIE ..ottt s 2192
F2.30 AUNOT .. 2193

L O B o5 (TSN~ | 1 OO ORI 2193
F.3.1. EXQAMPIE USAZE c.vveeuveenvieiieiieeieeite sttt ettt ettt steesresnbeebeesaaessteenbeenanesnnes 2193
F3.20 AUNOTS ..o 2193

Fid DLIEE_ISE weeuiieiieeiieeieeeeste ettt et ettt et ettt e st s st e e beesatesabeenbeebeesabeenbeeaeens 2194
Fi4.1. EXQMPIE USAZE ..eeeuveeneieiieiieeieerite sttt ettt esitesate sttt esateseteebeenaaesanes 2194
Fid.2. AUNOTS ... 2194

LS. CHKPASS. ettt sttt st ettt e aeeaee s 2194
F5. 10 AUNOT o 2195

FLB. CIIEXL .ot 2195
F.6.1. Rationaleccoiviiiiiiiiiiiiiiiiciic e 2195
F.6.2. HOW t0 USE It ...ecoiiiiiiiiiiciieeteeee et 2196
F.6.3. String Comparison Behavior...........ccccccviiiiininiininiineeceeeece e 2196
FL6.4. LAMILAtIONS .c.uveiiiiiiiiieiieiie ittt sttt et ettt be e st st e beesaeesaees 2197
FiB.5. AULNOT ...ttt ettt sttt s 2197

BT CUDC .ttt sttt st ettt st 2198
FU7 1 SYNEAX <ot 2198

FL7. 2. PLrECISION. ... ittt ettt ettt ettt sae et be et eneeneeenes 2198
FU7.30USAZE. . e e 2198

FL7.4. DETaULLS ..ottt ettt et 2200

FL7.5. INOEBS .ttt ettt ettt sttt b e s sa e 2201
F7.6. CTEAILS ...ttt st 2201

FL8. ADIINK .ttt s e 2202
ADIINK COMMECT ..eeeiiieiieeeee ittt ettt e e e e e e e e sesees e s aaeeeeeaeeeeseenans 2202
ADIINK COMMECE_Uiiiiiiiiiieieeeeeeeeeeee ettt ettt e e e e e e e e eeseeseseaaaaaeeeeaeeeeeeenans 2205
ADIINK _AISCONMMECT ..eeveiiiiieieeeeeeeeee ettt ettt e e e e e e e e s e s e es e e aaeeeeeaeeeeseenens 2206

xlvii

ABINK L. 2207

ADIINK_EXEC ..vviiiiriieeiiiieeiie ettt ee ettt e ettt e et e e s teeeetaeeesaaeessbaeessseeessseeessaeensseaanens 2211
ADIINK_OPCI. ...ttt ettt ettt e be e st e st b e saeesanes 2213
ADINK_FELCH ..veiiiiieciie ettt e e e b e e seb e e e abaeeebeeenens 2215
ADIINK_CLOSE ..veeeviieeiiieeeiie ettt et et e et e e st e e et aeesstaeessbee e sbaeessseeessaeensseennnns 2217
dblink_GEt_CONNECHIONScouveuiiiieiiiiieieiceeetee ettt 2219
ADIINK_EITOT_MESSAZEuveeuvieiieriieeieeite sttt ettt et ettt s e st be et e st e beesaeesaees 2220
ADIINK_SENA_QUETY ...eenviiiiiiiieiie ettt ettt st e 2221
ADINK_IS_DUSY vttt ettt ettt 2222
ABINK_ @Ot NOUIEY .eoueiiiiiiieeieetc ettt 2223
ADINK_ @O TESUIL..cueiiiiiiiieieeiic ettt st 2225
ADINK_CANCEL_QUETY . .eoueiiieiieiieiieieetee ettt ettt 2228
ABINK_ZEE PKEY ...eeeuirtitiieieieiieitee sttt ettt sttt 2229
dblink_build_SQI_INSeIT......eeoviiuieiieiieiieieeet ettt 2231
dblink_build_sql_delete.........cceriiiiirieiiiieiee e e 2233
dblink_build_sql_Update........cceeiiiiirieiirieieieeee e e 2235
FLO. QACt AN ..ttt et ettt e et e e e e e et e e e et e e eeateeeeaeaaens 2237
F.O.1. CONfIGUIALION ...eouviiiinieiieiieieeteete ettt sttt 2237
FLO. 2. TUSAZR.... ettt sttt sttt 2237
FLLO. QIO _XSYI.teutitieitiieeitet ettt ettt et et st b et e st st e it bt ebesbeeetenteeae 2237
F.10.1. CONfIGUIALION ..eovviniiiiiiniiniieienieeitente ettt ettt ettt 2238
FoL0.2. USAZE..cutieutiniieiteiesieeteteett ettt ettt sttt sttt s 2238
Fo11. @arthdiStANCEccuviieevieceiiie ettt ettt e e e et e e areeesaveeeeaseseaseeeaneans 2239
F.11.1. Cube-based earth diStanCescccueieveiieiiiieeeiiieeiieecree e e esveeesire e 2239
F.11.2. Point-based earth diStanCesccueeevviiiiieeeiiiieeie e e e 2241
Fo12. fUZZYSIMALCH.eiiiiiiieiiecieceee ettt ettt st ettt e s beebeebee s 2241
Fo12.1. SOUNAEX...oiiiiiiiieiiicciee ettt ette et e et e e sibae e abeeesaseeeabaeeneseeanens 2241
Fo12.2. LeVENSNLEIN ...oeceuviiiiiiieciie ettt ettt ettt evee e ev e eave e e avaeeeseeenens 2242
Fi12.3. MEtaPRONE. ...cccuviiiieiieiie ittt ettt ettt ettt e e e s 2243
F.12.4. Double Metaphone.........cocueevueeriienienieiiieniieeieeie ettt ettt st e 2243
L B 1 1] () (RSP SETUUUPRUUURN 2243
F.13.1. hstore External Representationccovueevuerrieeniieniieniieenieeniesieeieesee e 2244
F.13.2. hstore Operators and FUNCLIONSc.cceeviiriieriiiinienieeieeieesteeeeecee e 2244
Fo13.3. INAEXES ..uvveeiiiieeiie ettt tee ettt e e te e st e e et e e s taeessbaeesssaeensseeenssaeenssesnnnns 2247
FiI3.4. EXAMPIES ...c.oooiiiiiiiiieiieieeteteeee e e 2248
| S B R TN ¥ 1 £ 6 oSSRt 2249
F.13.6. COMPAtDILILY ..eoveeieieiieiieieeie ettt 2249
FoI13.7. AUTNOTSoeiiiieee ettt et e e e e arae e e e eeareeee s 2250
FilA INTAZE ..ottt st e e 2250
Fol4. 1. FUNCHONSveeiieie ettt et e e eeaeeeeaeeeeaeeeenns 2250
Fo14.2. Sample USES.....cooveiiiiiiiiieeieeiteeteeeettesite ettt ettt e 2250
LS. ANEAITAY -ttt eh ettt et e bt s at et b e st e bt e st e naeseeetesbeeneenteene 2251
F.15.1. intarray Functions and Operators............ccceeceerereerienenienieneeienee e 2252
FoI5.2. TNAEX SUPPOIT..ccniiiiiiiiiiiieiieitee ettt sttt 2253
FoI5.3 EXAMPIE ..ottt sttt e 2254
F15.4. BENChMATKcccviiiiiiiiiiiii e et 2254
FL15.5. AULNOIS ...oiiiiiiiiie e ettt e et e e e et e e eate e eeaaaeeeareeeens 2254
FLLB. 08Nttt et e e et e e e e e e eate e e e tbeseeabeeetraaens 2254

xlviii

Fi16.1. DAta tYPeS.ccueereiieiieiieiie ittt sttt ettt ettt et e st sat e ebeesatesateebeesaeesanes 2255

FiIO.2. CaSS ettt ettt ettt sttt et 2256
F.16.3. Functions and OPETratorsc.ceeeverrieeriienieniieesieeneestesieesieesteseeeesseesaeesnnes 2256
Fi16.4. EXAMPIES ..ccuiiiiiiiiiiiieiie ettt ettt st ettt e e 2257
F.16.5. BibLIOZIAPNY.....eiiiiiiiiiiiiieeeeteeee ettt st e 2258
Fi160.6. AUTNOT ...t e 2258

S 1o USSR 2258
FA7. 1. RAONAIE ..ttt st e 2258
F7.2. HOW t0 USE Tt .ttt 2259
Fo17.3. LIMIEALONS ...eenviiiiiieiieiie ittt ettt ettt sttt sat e e esaeesaees 2259

| N 111 4 o) TSR SPRRSP 2260

BB IEIE .ottt ettt ettt et be st e e bt e st et e st e naesae e teebeenteteene 2260
FoI8.1. DefilItiONS ...ttt ettt ettt ettt ettt e enee e 2260
F.18.2. Operators and FUNCHONScocuiiirierieiieiesiee et e 2261
FoI8.3. TIACXKES ..ottt ettt ettt s nee e 2264
FoI8.4. EXAMPIE ..ottt ettt st 2264
FoI8.5. AUNOTIS ..ottt ettt 2267

Fi19. 01d2NAIME ...ttt ettt sttt et sttt 2267
FoI1O.1. OVEIVIEW ..oniiienieiieeeieettee ettt sttt sttt e e 2267
F.19.2. 01d20ame OPLIONScc.eeueeieriieieniiiienienieeieieeet ettt sttt 2267
Fo19.3. EXAMPIES ..ottt sttt st s 2268
Fo19.4. LIMITAtIONS «..eveeniiiieiieieeiteiesieeiteste ettt sttt et nae e 2271
Fo1O.5. AUNOT ...ttt 2271

F.20. PAZEINSPECT ..ttt ettt ettt et sttt ae bt esbesane e ene 2271
F.20.1. FUNCHOMNS ...cuiiiiiinieeiteieeieeteetcetese ettt sttt 2271

F.21. pasSWOTACRECKcc.viiiiiiiiiiieieeiteeteee ettt ettt sttt e st e ebee s 2273
F.22. pg_archiVeCIBaNUDcccveviiriiiiiieieeie ettt ettt sttt et st et e st e eaee s 2273
FL22. 1. USAZE. et iteeiteeiie ettt sttt ettt ettt ettt st e be e st e st e e beenaeesanes 2274
F.22.2. pg_archivecleanup OptionS........ccocceevueeriienieniieniiieniienreeieenieeste st enieesaeesaees 2274
Fi22.3 EXAMPIES ..coutiiiiiiiiiiieite ettt ettt ettt sttt et st 2274
F.22.4. SUppOTted SETVET VETSIONS ..ecuveeuvieriieeieeiieniieeieeieesitestesteesbeesstesaseeseesaeesanes 2275
F22.5. AUTNOT ..ottt 2275

FL23. PEDENCH...c..eiiiiiiiie ettt st et 2275
F23.1. OVEIVIEW ..ottt e e 2275
F.23.2. pgbench Initialization OPtions...........cccceceecveriieieniinieneneneeeseeeee e 2276
F.23.3. pgbench Benchmarking Options...........coccecueriieieniinieieneniceneeieieeeeee e 2277
F.23.4. pgbench Common OPtionsc..ccceeeririeniinieniinieiene et 2278
F.23.5. What is the “transaction” actually performed in pgbench?.......................... 2278
F.23.6. CUStOM SCIIPLS ..ottt e 2279
F.23.7. Per-transaction lOZZINgcccecevirierienieienieeeee et 2281
F.23.8. GOOA PractiCesceoueiueeuieiieiieiesie ettt 2281

F.24. pg DULFErCACKE. ...c.eiieiieiee et 2282
F.24.1. The pg_bufferCache VIEWcccuiiecieeeeiieeeeieeeeetee e et eetee et eeaeeeeaveeenns 2282
F.24.2. Sample OULPUL ...c.eeeuiiiiiiieeeeitenteeeeeeete ettt 2283
F.24.3. AUTNOTS ..ottt 2283

FL25. PECTYPLO -ttt sttt st e st ne e 2283
F.25.1. General hashing functions...........c.ccoceveririeninienineeeeeeeeeeee e 2283

FL25. 1.1, AigeST () teeeieeeiieeeiee ettt ettt et e e e e e et e e ev e eeatee e eataeeetreeenens 2284

xlix

F.26.

F27.

F.28.

F.29.

F25.1.2. AMAEC () worviiiiiieiiieiiiesceeee e 2284

F.25.2. Password hashing functionscecceevierieniieniiienieniecieeieeste e 2284
F.25.2.1. CEYDE () ctertieeeieneeencee ettt sttt ettt st 2285
F.25.2.2. GEN_SAL1E () tetreeeeeeiiiieeeeeeireee ettt eetre e e et e e eeere e e eenre e e e eennaes 2285

F.25.3. PGP encryption fUnCLIONSccocueevueiiiienierieiieeniteeieeie ettt 2286
F25.3.1. DOP_SYM_ENCIYPE () tieeeerreeeeeeiirieeeeeeiireeeeeeerreeeeesireeeeeeeiareeeeeennnes 2287
F.25.3.2. pgp_SYM_dECTYDE () tereeererreerrieiiieeeiieesieeeesiseeesereeessseeessseeesssessnns 2287
F.25.3.3. DOD_PUD_ENCTYDE () tereeerrieerrieiieieeeiieeseeeesseeesereeessseeessseeesssessnns 2288
F.25.3.4. pgp_pub_deCTYDPE () ceeeerereeerrieeieeeeiieeseeeesseeeseseeesseeesseeesssesnnnns 2288
F.25.3.5. DGP_KEY_ 1A () rteerrieieiiieeiieeerieesetteeeteeeeeeeestee et eesnseeesnbeeeereeennns 2288
F.25.3.6. armor (), AEATMOT () teeeeeeeeeiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeaeeeeeeeseeeeeeesaanaes 2288
F.25.3.7. Options for PGP functionsc..cecceceeverveeeinenenenienieeneneniesennene 2289

F.25.3.7.1. CIPREr-al@ococovevueieenininienieicieeeesereceeeee e 2289
F.25.3.7.2. compress-al@occccccciuiiiiiiiiiiiiiiiiei e 2289
F.25.3.7.3. compress-1eVelc.cceceeininininieiniieniieceeeeeeeseseenen 2289
F.25.3.7.4. convert-Crlf.........coooiiiiiiiiiiee e 2290
F.25.3.7.5. diSable-mdC........cooueruiriiniiniieiieeseeeeecee e 2290
F.25.3.7.6. enable-session-Keyc.ccocceveiienieninieninienie e 2290
F.25.3.7.7. S2K-MOME......ccueriiiiiiiiiiniieiee et 2290
F.25.3.7.8. s2k-digest-alg0.......coceevueririenieiiiieniecieecec e 2290
F.25.3.7.9. s2k-CIipher-algoc.cceceverieniiiiieniicieccec e 2290
F.25.3.7.10. unicode-mode..........cccceeereerereenienienieniieeenie e 2291
F.25.3.8. Generating PGP keys with GnuPG..........cc.cccceciviniinininnininienee 22901
F.25.3.9. Limitations of PGP codeccccoceevieniniininiiniininicnceeicneeieiee 2292

F.25.4. Raw encryption fUnCHIONScceevueerieeriienieeieeiieeneeeie et ste e esane e 2292

F.25.5. Random-data fUNCHONScoceevuiririenieniiieniineetescetenie et 2293

FL25.0. INOTES ..cnveiieniieieeierieeteteet ettt ettt ettt st et sttt e s ae e 2293
F.25.6.1. Configuration........c.cceeueesieerienieniieenieeniesie et sveeieesieesevesveeaee s 2293
F.25.6.2. NULL handlingc.ccecueeeeieniinienienenieieneerenieeeeniesieeresieenenene 2294
F.25.6.3. Security [IMitations.........cceereeriernieeniienienieeieeniee e eieesieesieeeveeieens 2294
F.25.6.4. Useful 1€adiNgeevieriiiiieiieniieieeiteste sttt st 2294
F.25.6.5. Technical referencescoceeeuereeveenerienienieieniieeenic e 2295

F25.7. AUTNOT ...ttt 2295

PE_TEESPACEMADeoniiieiiiiieiicc ettt ettt s 2296

FL26. 1. FUNCHONS ..ttt ettt ettt e 2296

F.26.2. Sample OULPULoueeieiiiieiiiieieiceeeeeeee e e 2296

FL26.3. AUTNOT ...ttt ettt ee e 2297

PEIOWIOCKS ...ttt s 2297

FL27. 1. OVETVIEW ..ottt ettt st 2297

F.27.2. Sample OULPULc.eiiiiiiiiiiiicicc e 2298

F27.3. AUTNOT ...ttt 2298

P SEANADY .ttt 2298

F28. 1. USAZE ... s 2299

F.28.2. pg_standby OPLIONSccceceruiriiieieieiniinienieniceee ettt 2299

F.28.3. EXAMPIES ..couviiiiiiiiiiieiicieec ettt 2300

F.28.4. Supported SEIVEr VEISIONScc.eeveruiruieierieeiienieeitentesieetestesieetesbeeneeneeseeeneesaes 2301

FL28.5. AUNOT ...ttt 2302

PE_STAL_STALEIMCIIESeveneieiteteeitete ettt ettt ettt et et e e bt et e b eat et ebeebesbeesbesbeebnenteene 2302

F.29.1. The pg_stat_statements VIEW.....ccveeeeeeiiureeeeeiireeeeeesinreeeeeeinneeeeesinneeeees 2302

F.29.2. FUNCHONS ..ottt sttt st 2303
F.29.3. Configuration Parametersceerverruerrieerireeiuensieenieeseesieenieesseeseseesseesseesanes 2304
F.20.4. Sample OULPUL ...cc.veeiieiiiiieeieeite ettt ettt e 2304
F29.5. AUTNOT ..ottt 2305

F.30. PESTALLUPLE.....c.eeeiiiieiieieeieeteetete ettt ettt 2305
Fo30. 1. FUNCHONS ..ttt ettt ettt ettt e 2306
FL30.2. AUTNOTS ...ttt st 2307

F31. PG @M.ttt e e 2307
F.31.1. Trigram (or Trigraph) CONCEPLS........ccoeruieieriiiieriinieieneeeeeeeeeee e 2308
F.31.2. Functions and OPEratorscccoeeierieriiiieniieieieee e 2308
F.31.3. INAEX SUPPOIT...eeiiiiiiiiiiiiiiii e e 2309
F.31.4. Text Search INteZrationccceueeueeeiriniinenienieieeneneercree e seenee 2309
F31.5. REEIONCES ...ttt e 2310
FL31.6. AUTNOTS ...ttt 2310

Fo32. PG UPZIAAE -ttt sttt ettt et bbbt eae 2310
F.32.1. Supported VEISIONSc.eeueeiiriieiiniieiieieitceie ettt 2310
F.32.2. pg_upgrade OPtiONS ...c..cc.eeviriieieniieiierienteeienie ettt ettt sttt see e nae e 2311
F.32.3. UPZIade SEPS ..cuverveemieiiriieiiniieienit ettt sttt ettt s 2312
F.32.4. Limitations in Migrating from PostgreSQL 8.3cccccooerviiieninninincenne 2315
FL32.5. INOTES ettt sttt sttt eaee e e 2315
L33 SO ettt ettt b e a et st et b e st eae 2316
F.33.1. RAONALE «..neiiiniiieeiieieeieetecetee ettt 2316
FL33.20 SYNEAX cetioiiiiiiieetereetetet ettt st e 2316
F.33.3. PreCISION ...cevirieeiirieeiieieeiteteetcete ettt sttt 2317
Fi33.4. USAZE.. et itieiieeiie ettt sttt ettt ettt e st e st e be e et e sat e e beenaaeennes 2318
FL33.5. NOLES ettt ettt sttt ettt ettt sttt st a e saee e e 2319
F33.0. CIEILS c.evveneieieeienieeieieeiteteetcetes ettt sttt s e 2319

L34 Pttt ettt e ae e h e st et s ateebeeaeens 2319
F.34.1. refint.c — functions for implementing referential integrity...........cccccevueeneee. 2319
F.34.2. timetravel.c — functions for implementing time travel.............c.cccoeeenueennee. 2320
F.34.3. autoinc.c — functions for autoincrementing fields..........cccceeveeriieeneeneennen. 2321
F.34.4. insert_username.c — functions for tracking who changed a table 2321
F.34.5. moddatetime.c — functions for tracking last modification time 2321

FL35. SSINTO. ..ttt sttt st e 2322
F.35.1. Functions Providedccocceiiiiiiiiiiiiiinieeieeeeeeeee et 2322
FL35.2. AUNOT ...ttt sttt et ae s 2323

F.36. tablefUnCoouiiiiiiieeee et 2323
F.36.1. Functions Providedccocceeviiiiiiiiiiiiieeceeeeeeeeete e 2323
Fo36.1.1. NOTMAL TANA tttttitiieeeeeeeeeeeeeeeeeeee e e e e e e e e e et eeeeeeeeeeeeseeeeaans 2324

B 30, 1.2, CrOS ST A (E@XE) tueeeeeeeee e e et e e e e e e e e e e e e e eeeeaaaes 2325

FL360.1.3. CroOSStabN (£0XE) tueeeeiteeeeeeeee e eeee e e e e eeeeeeeeeaeaeeeeeaaaesaneans 2327

F.36.1.4. Crosstab (LK, TXE) trorrrrieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseseeeesnans 2328

F36.1.5. CONNECEDY ittt ettt eae e e aaeeeaes 2331

F30.2. AUTNOT ...ttt 2333

37 St _PALSET ettt ettt ettt sttt sttt e aeene e 2334
B3 1. USAZE. .ttt ettt ettt st ettt sttt ettt et ee s 2334

FL38. tSCAICRZ ...ttt ettt 2335

li

F.38.1. POrtability ISSUES ...cccueeruiiiiieiieiieiieeieette ettt st 2335

F.38.2. Converting a pre-8.3 Installation...........cccovveevieriienieniieniieeiienieeieeeeee e 2336
F.38.3. REfEIENCEScveeuiiiieiieiieiicieccte ettt 2336

F.39. UNACCENT ..ottt ettt sr e ettt neeae 2336
F.39.1. CONAAGUIATION ...ttt ettt et e e 2337
Fl39.2. USAZE...uioieiieieete ettt st et st 2337
FL39.3. FUNCHONS ..ttt ettt et ettt ettt e e e 2338

Fl40. UULIA-08SP ..ttt et st s st e 2338
F40.1. uuid—055p FUNCHONSoooeeiiiiiiieeiiie et 2339
FlA0.2. AUTNOT ...ttt sttt e nee s 2340

FlAT. VACUUIMIO. c...eiiiiiiiiciieeteee ettt sttt e 2340
BT T USAZE...iiiteieeee ettt et et sttt et 2340
FiA1.2. MEthOd ..ottt 2341
FiA1.3. AUTNOT ..ottt e e 2341

FlA2. XIMI2 oottt ettt et a e st b ettt et she et b enteteene 2341
F.42.1. Deprecation NOLICEccveruireeienieeieniesteete st eete e ete et ettt nee e e saes 2341
F.42.2. Description Of fUNCHONS.......coeeiiriiieienieeieieeetee et 2342
Fid2.3. XPath £AD1E ittt sttt sttt st 2343
F.42.3.1. Multivalued reSultscccoeieviiriiienenieieneeieieeceie e 2345

Fi42.4. XSLT fUNCHONS ..ottt ettt sttt e 2346
FiA2.4.], XS 1t PrOCESS cuiieeiiiectieeeetiee et et e et et e e ae e e e veeeeateeeeaveeeetreeenes 2346

FiA2.5. AUTNOT ...ttt 2346

G. EXEEIrNAl PIOJECES ...oveiiiiiiiieiiiceiteeetet ettt ettt ettt sttt 2347
G.1. CHENt INEETTACES ... eouveuiieiieiirieeierieete ettt sttt 2347
G.2. Procedural Languages.........c.eecveeuierieriieeiienitenie st eieesieesiresteeseesseesbessesnseesssesssesnne 2348
G.3. EXEEINSIONS ...ttt sttt ettt ettt ettt ettt ettt st st e e b eba et saeenaesaee 2348
H. The Source Code REPOSILOTYcevuieriiriiiiieiieiiesieertteite st ete et e stestesbe e beesatesateebeesanesanas 2350
H.1. Getting The SoUrce Via Gilcccceerieriieiiieniienieeieesiteste ettt st et siee e eseenaee s 2350
L. DOCUMENTALION.....cueeiiiiieiiniietintcetente ettt ettt sttt ettt eanesbe et esaesaee e sbeeanenteeneenaenaee 2351
L1 DOCBOOK ...ttt sttt s st 2351
LL20 TOOL SELS ..ttt ettt ettt ettt st sttt s eaesae e e sbeeanenneene 2351
[.2.1. Linux RPM InsStallationcoccoceniriienininieniinieiencceenceeceseeeeee e 2352

1.2.2. FreeBSD INsStallationc...ccceieeienirienieninieiineeienec e 2352

1.2.3. Debian Packages........cccoeeeeiinieieniiiieieniecieieeeee ettt 2353

1.2.4. Manual Installation from SOUICEccceeriiriieriiiiniinieeieeeeteee e 2353
1.2.4.1. Installing OpenJade............cccoeieviriiiiniiieiniec e 2353

1.2.4.2. Installing the DocBook DTD Kit........ccccoceeciiniieiiiniiiiiniiicieiecieiee 2354

1.2.4.3. Installing the DocBook DSSSL Style Sheets...........ccccooerieiinininnnnne 2355

1.2.4.4. Installing JadeTeX..........cccooiiiiiiniiiiicee e 2355

[.2.5. Detection DY CONELGUTE wouiiiirieierieeiestesteete sttt sttt sttt 2355

1.3. Building The DOCUMENTAtIONc.ceiuieieiieiieieetieiesie ettt 2356
L3 1 HTML ettt st ettt ettt et nee s 2356

L.3.2. MLANPAZES ..ottt ettt ettt ettt sbe et et b ettt et e 2356

[.3.3. Print Output via JadeTeXcccoeoiriiiiiiiieie et 2357

L.3.4. OVErlOW TEXEeeuiiiiiiieiieiieieeieete ettt sttt 2357

1.3.5. Print Output via RTFcc.ooiiiiiiiiiie e 2358

1.3.6. Plain Text Flescoeeiiiiiiiiiiniieienitetee e 2359

L.3.7. SYNtax CRECKcoouiiiiiiiiiiieiiiee e 2359

lii

L.4. Documentation AUtROTING.......ccceeriiriiriiiiiienienie ettt ettt st e st e aeenaee s 2360

L4.1. EMACS/PSGML ..ottt ettt s e 2360

1.4.2. Other EMacs MOESc..cocuevieririiniiieieniecicieeeete ettt 2361

L5, Sty1e GUIAEcoiiiiiieieeieeteeeet ettt sttt st sttt et et eae e 2361

L5.1. Reference Pages.......cccceviiiiiiiiiiiiiieeecteteee ettt 2361

JUACTONYIMIS ...ttt ettt et et st sh e n e st eaesaee s e sbeeanenene 2364
Bibliography 2370
Index 2372

liii

Preface

This book is the official documentation of PostgreSQL. It has been written by the PostgreSQL develop-
ers and other volunteers in parallel to the development of the PostgreSQL software. It describes all the
functionality that the current version of PostgreSQL officially supports.

To make the large amount of information about PostgreSQL manageable, this book has been organized
in several parts. Each part is targeted at a different class of users, or at users in different stages of their
PostgreSQL experience:

« Part I is an informal introduction for new users.

« Part IT documents the SQL query language environment, including data types and functions, as well as
user-level performance tuning. Every PostgreSQL user should read this.

« Part III describes the installation and administration of the server. Everyone who runs a PostgreSQL
server, be it for private use or for others, should read this part.

« Part IV describes the programming interfaces for PostgreSQL client programs.

« Part V contains information for advanced users about the extensibility capabilities of the server. Topics
include user-defined data types and functions.

« Part VI contains reference information about SQL commands, client and server programs. This part
supports the other parts with structured information sorted by command or program.

« Part VII contains assorted information that might be of use to PostgreSQL developers.

1. What is PostgreSQL?

PostgreSQL is an object-relational database management system (ORDBMS) based on POSTGRES,
Version 4.2', developed at the University of California at Berkeley Computer Science Department. POST-
GRES pioneered many concepts that only became available in some commercial database systems much
later.

PostgreSQL is an open-source descendant of this original Berkeley code. It supports a large part of the
SQL standard and offers many modern features:

« complex queries

- foreign keys

. triggers

. views

- transactional integrity

« multiversion concurrency control

Also, PostgreSQL can be extended by the user in many ways, for example by adding new

« data types

1. http://db.cs.berkeley.edu/postgres.html

liv

Preface

« functions
 operators
 aggregate functions
« index methods

« procedural languages

And because of the liberal license, PostgreSQL can be used, modified, and distributed by anyone free of
charge for any purpose, be it private, commercial, or academic.

2. A Brief History of PostgreSQL

The object-relational database management system now known as PostgreSQL is derived from the POST-
GRES package written at the University of California at Berkeley. With over two decades of development
behind it, PostgreSQL is now the most advanced open-source database available anywhere.

2.1. The Berkeley POSTGRES Project

The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense Advanced
Research Projects Agency (DARPA), the Army Research Office (ARO), the National Science Foundation
(NSF), and ESL, Inc. The implementation of POSTGRES began in 1986. The initial concepts for the
system were presented in The design of POSTGRES , and the definition of the initial data model appeared
in The POSTGRES data model . The design of the rule system at that time was described in The design
of the POSTGRES rules system. The rationale and architecture of the storage manager were detailed in
The design of the POSTGRES storage system .

POSTGRES has undergone several major releases since then. The first “demoware” system became op-
erational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in The
implementation of POSTGRES , was released to a few external users in June 1989. In response to a critique
of the first rule system (A commentary on the POSTGRES rules system), the rule system was redesigned
(On Rules, Procedures, Caching and Views in Database Systems), and Version 2 was released in June
1990 with the new rule system. Version 3 appeared in 1991 and added support for multiple storage man-
agers, an improved query executor, and a rewritten rule system. For the most part, subsequent releases
until Postgres95 (see below) focused on portability and reliability.

POSTGRES has been used to implement many different research and production applications. These in-
clude: a financial data analysis system, a jet engine performance monitoring package, an asteroid tracking
database, a medical information database, and several geographic information systems. POSTGRES has
also been used as an educational tool at several universities. Finally, Illustra Information Technologies
(later merged into Informix?, which is now owned by IBM?) picked up the code and commercialized it.
In late 1992, POSTGRES became the primary data manager for the Sequoia 2000 scientific computing
project®.

The size of the external user community nearly doubled during 1993. It became increasingly obvious that
maintenance of the prototype code and support was taking up large amounts of time that should have been

2. http://www.informix.com/
3. http://www.ibm.com/
4. http://meteora.ucsd.edu/s2k/s2k_home.html

IAY

Preface

devoted to database research. In an effort to reduce this support burden, the Berkeley POSTGRES project
officially ended with Version 4.2.

2.2. Postgres95

In 1994, Andrew Yu and Jolly Chen added an SQL language interpreter to POSTGRES. Under a new
name, Postgres95 was subsequently released to the web to find its own way in the world as an open-
source descendant of the original POSTGRES Berkeley code.

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes improved
performance and maintainability. Postgres95 release 1.0.x ran about 30-50% faster on the Wisconsin
Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following were the major
enhancements:

+ The query language PostQUEL was replaced with SQL (implemented in the server). Subqueries were
not supported until PostgreSQL (see below), but they could be imitated in Postgres95 with user-defined
SQL functions. Aggregate functions were re-implemented. Support for the GROUP BY query clause was
also added.

« A new program (psql) was provided for interactive SQL queries, which used GNU Readline. This
largely superseded the old monitor program.

« A new front-end library, 1ibpgtcl, supported Tcl-based clients. A sample shell, pgtclsh, provided
new Tcl commands to interface Tcl programs with the Postgres95 server.

+ The large-object interface was overhauled. The inversion large objects were the only mechanism for
storing large objects. (The inversion file system was removed.)

+ The instance-level rule system was removed. Rules were still available as rewrite rules.

« A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed with
the source code

+ GNU make (instead of BSD make) was used for the build. Also, Postgres95 could be compiled with an
unpatched GCC (data alignment of doubles was fixed).

2.3. PostgreSQL

By 1996, it became clear that the name “Postgres95” would not stand the test of time. We chose a new
name, PostgreSQL, to reflect the relationship between the original POSTGRES and the more recent ver-
sions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting the
numbers back into the sequence originally begun by the Berkeley POSTGRES project.

Many people continue to refer to PostgreSQL as “Postgres” (now rarely in all capital letters) because of
tradition or because it is easier to pronounce. This usage is widely accepted as a nickname or alias.

The emphasis during development of Postgres95 was on identifying and understanding existing problems
in the server code. With PostgreSQL, the emphasis has shifted to augmenting features and capabilities,
although work continues in all areas.

vi

Preface

Details about what has happened in PostgreSQL since then can be found in Appendix E.

3. Conventions

This book uses the following typographical conventions to mark certain portions of text: new terms,
foreign phrases, and other important passages are emphasized in ifalics. Everything that represents in-
put or output of the computer, in particular commands, program code, and screen output, is shown in a
monospaced font (example). Within such passages, italics (example) indicate placeholders; you must
insert an actual value instead of the placeholder. On occasion, parts of program code are emphasized in
bold face (example), if they have been added or changed since the preceding example.

The following conventions are used in the synopsis of a command: brackets ([and]) indicate optional
parts. (In the synopsis of a Tcl command, question marks () are used instead, as is usual in Tcl.) Braces
({ and }) and vertical lines (|) indicate that you must choose one alternative. Dots (. . .) mean that the
preceding element can be repeated.

Where it enhances the clarity, SQL commands are preceded by the prompt =>, and shell commands are
preceded by the prompt $. Normally, prompts are not shown, though.

An administrator is generally a person who is in charge of installing and running the server. A user
could be anyone who is using, or wants to use, any part of the PostgreSQL system. These terms should
not be interpreted too narrowly; this book does not have fixed presumptions about system administration
procedures.

4. Further Information

Besides the documentation, that is, this book, there are other resources about PostgreSQL:

Wiki
The PostgreSQL wiki® contains the project’s FAQ® (Frequently Asked Questions) list, TODO’ list,
and detailed information about many more topics.

Web Site

The PostgreSQL web site® carries details on the latest release and other information to make your
work or play with PostgreSQL more productive.

Mailing Lists

The mailing lists are a good place to have your questions answered, to share experiences with other
users, and to contact the developers. Consult the PostgreSQL web site for details.

PN

http://wiki.postgresql.org
http://wiki.postgresql.org/wiki/Frequently_Asked_Questions
http://wiki.postgresql.org/wiki/Todo
http://www.postgresql.org

vii

Preface

Yourself!

PostgreSQL is an open-source project. As such, it depends on the user community for ongoing sup-
port. As you begin to use PostgreSQL, you will rely on others for help, either through the documen-
tation or through the mailing lists. Consider contributing your knowledge back. Read the mailing
lists and answer questions. If you learn something which is not in the documentation, write it up and
contribute it. If you add features to the code, contribute them.

5. Bug Reporting Guidelines

When you find a bug in PostgreSQL we want to hear about it. Your bug reports play an important part
in making PostgreSQL more reliable because even the utmost care cannot guarantee that every part of
PostgreSQL will work on every platform under every circumstance.

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No one is required to follow them but doing so tends to be to everyone’s advantage.

We cannot promise to fix every bug right away. If the bug is obvious, critical, or affects a lot of users,
chances are good that someone will look into it. It could also happen that we tell you to update to a newer
version to see if the bug happens there. Or we might decide that the bug cannot be fixed before some
major rewrite we might be planning is done. Or perhaps it is simply too hard and there are more important
things on the agenda. If you need help immediately, consider obtaining a commercial support contract.

5.1. Identifying Bugs

Before you report a bug, please read and re-read the documentation to verify that you can really do
whatever it is you are trying. If it is not clear from the documentation whether you can do something or
not, please report that too; it is a bug in the documentation. If it turns out that a program does something
different from what the documentation says, that is a bug. That might include, but is not limited to, the
following circumstances:

« A program terminates with a fatal signal or an operating system error message that would point to a
problem in the program. (A counterexample might be a “disk full” message, since you have to fix that
yourself.)

« A program produces the wrong output for any given input.
+ A program refuses to accept valid input (as defined in the documentation).

+ A program accepts invalid input without a notice or error message. But keep in mind that your idea of
invalid input might be our idea of an extension or compatibility with traditional practice.

« PostgreSQL fails to compile, build, or install according to the instructions on supported platforms.
Here “program” refers to any executable, not only the backend server.

Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of the
mailing lists for help in tuning your applications. Failing to comply to the SQL standard is not necessarily
a bug either, unless compliance for the specific feature is explicitly claimed.

lviii

Preface

Before you continue, check on the TODO list and in the FAQ to see if your bug is already known. If you
cannot decode the information on the TODO list, report your problem. The least we can do is make the
TODO list clearer.

5.2. What to report

The most important thing to remember about bug reporting is to state all the facts and only facts. Do not
speculate what you think went wrong, what “it seemed to do”, or which part of the program has a fault.
If you are not familiar with the implementation you would probably guess wrong and not help us a bit.
And even if you are, educated explanations are a great supplement to but no substitute for facts. If we are
going to fix the bug we still have to see it happen for ourselves first. Reporting the bare facts is relatively
straightforward (you can probably copy and paste them from the screen) but all too often important details
are left out because someone thought it does not matter or the report would be understood anyway.

The following items should be contained in every bug report:

« The exact sequence of steps from program start-up necessary to reproduce the problem. This should
be self-contained; it is not enough to send in a bare SELECT statement without the preceding CREATE
TABLE and INSERT statements, if the output should depend on the data in the tables. We do not have
the time to reverse-engineer your database schema, and if we are supposed to make up our own data we
would probably miss the problem.

The best format for a test case for SQL-related problems is a file that can be run through the psql
frontend that shows the problem. (Be sure to not have anything in your ~/.psqglrc start-up file.) An
easy way to create this file is to use pg_dump to dump out the table declarations and data needed to set
the scene, then add the problem query. You are encouraged to minimize the size of your example, but
this is not absolutely necessary. If the bug is reproducible, we will find it either way.

If your application uses some other client interface, such as PHP, then please try to isolate the offending
queries. We will probably not set up a web server to reproduce your problem. In any case remember
to provide the exact input files; do not guess that the problem happens for “large files” or “midsize
databases”, etc. since this information is too inexact to be of use.

+ The output you got. Please do not say that it “didn’t work™ or “crashed”. If there is an error message,
show it, even if you do not understand it. If the program terminates with an operating system error,
say which. If nothing at all happens, say so. Even if the result of your test case is a program crash or
otherwise obvious it might not happen on our platform. The easiest thing is to copy the output from the
terminal, if possible.

Note: If you are reporting an error message, please obtain the most verbose form of the message.
In psqgl, say \set VERBOSITY verbose beforehand. If you are extracting the message from the
server log, set the run-time parameter log_error_verbosity to verbose so that all details are logged.

Note: In case of fatal errors, the error message reported by the client might not contain all the
information available. Please also look at the log output of the database server. If you do not keep
your server’s log output, this would be a good time to start doing so.

lix

Preface

- The output you expected is very important to state. If you just write “This command gives me that
output.” or “This is not what I expected.”, we might run it ourselves, scan the output, and think it
looks OK and is exactly what we expected. We should not have to spend the time to decode the exact
semantics behind your commands. Especially refrain from merely saying that “This is not what SQL
says/Oracle does.” Digging out the correct behavior from SQL is not a fun undertaking, nor do we all
know how all the other relational databases out there behave. (If your problem is a program crash, you
can obviously omit this item.)

+ Any command line options and other start-up options, including any relevant environment variables or
configuration files that you changed from the default. Again, please provide exact information. If you
are using a prepackaged distribution that starts the database server at boot time, you should try to find
out how that is done.

« Anything you did at all differently from the installation instructions.

+ The PostgreSQL version. You can run the command SELECT version () ; to find out the version of
the server you are connected to. Most executable programs also support a ——version option; at least
postgres —--versionand psgl —--version should work. If the function or the options do not exist
then your version is more than old enough to warrant an upgrade. If you run a prepackaged version,
such as RPMs, say so, including any subversion the package might have. If you are talking about a Git
snapshot, mention that, including the commit hash.

If your version is older than 9.0.4 we will almost certainly tell you to upgrade. There are many bug
fixes and improvements in each new release, so it is quite possible that a bug you have encountered in
an older release of PostgreSQL has already been fixed. We can only provide limited support for sites
using older releases of PostgreSQL; if you require more than we can provide, consider acquiring a
commercial support contract.

+ Platform information. This includes the kernel name and version, C library, processor, memory infor-
mation, and so on. In most cases it is sufficient to report the vendor and version, but do not assume
everyone knows what exactly “Debian” contains or that everyone runs on i386s. If you have installation
problems then information about the toolchain on your machine (compiler, make, and so on) is also
necessary.

Do not be afraid if your bug report becomes rather lengthy. That is a fact of life. It is better to report
everything the first time than us having to squeeze the facts out of you. On the other hand, if your input
files are huge, it is fair to ask first whether somebody is interested in looking into it. Here is an article’
that outlines some more tips on reporting bugs.

Do not spend all your time to figure out which changes in the input make the problem go away. This will
probably not help solving it. If it turns out that the bug cannot be fixed right away, you will still have time
to find and share your work-around. Also, once again, do not waste your time guessing why the bug exists.
We will find that out soon enough.

When writing a bug report, please avoid confusing terminology. The software package in total is called
“PostgreSQL”, sometimes “Postgres” for short. If you are specifically talking about the backend server,
mention that, do not just say “PostgreSQL crashes”. A crash of a single backend server process is quite
different from crash of the parent “postgres” process; please don’t say “the server crashed” when you
mean a single backend process went down, nor vice versa. Also, client programs such as the interactive

9. http://www.chiark.greenend.org.uk/~sgtatham/bugs.html

Ix

Preface

frontend “psql” are completely separate from the backend. Please try to be specific about whether the
problem is on the client or server side.

5.3. Where to report bugs

In general, send bug reports to the bug report mailing list at <pgsgl-bugs@postgresql.org>. You are
requested to use a descriptive subject for your email message, perhaps parts of the error message.

Another method is to fill in the bug report web-form available at the project’s web site'®. Entering a bug
report this way causes it to be mailed to the <pgsgl-bugs@postgresql.org> mailing list.

If your bug report has security implications and you’d prefer that it not become immediately visible
in public archives, don’t send it to pgsgl-bugs. Security issues can be reported privately to
<security@postgresqgl.org>.

Do not send bug reports to any of the user mailing lists, such as <pgsgl-sgl@postgresgl.org> or
<pgsgl-general@postgresql.org>. These mailing lists are for answering user questions, and their
subscribers normally do not wish to receive bug reports. More importantly, they are unlikely to fix them.

Also, please do not send reports to the developers’ mailing list <pgsgl-hackers@postgresqgl.org>.
This list is for discussing the development of PostgreSQL, and it would be nice if we could keep the bug
reports separate. We might choose to take up a discussion about your bug report on pgsgl-hackers, if
the problem needs more review.

If you have a problem with the documentation, the best place to report it is the documentation mailing
list <pgsgl-docs@postgresgl .org>. Please be specific about what part of the documentation you are
unhappy with.

If your bug is a portability problem on a non-supported platform, send mail to
<pgsgl-hackers@postgresql.org>, so we (and you) can work on porting PostgreSQL to your
platform.

Note: Due to the unfortunate amount of spam going around, all of the above email addresses are
closed mailing lists. That is, you need to be subscribed to a list to be allowed to post on it. (You need
not be subscribed to use the bug-report web form, however.) If you would like to send mail but do not
want to receive list traffic, you can subscribe and set your subscription option to nomail. For more
information send mail to <majordomo@postgresql .org> with the single word he1p in the body of the
message.

10. http://www.postgresql.org/

Ixi

l. Tutorial

Welcome to the PostgreSQL Tutorial. The following few chapters are intended to give a simple introduc-
tion to PostgreSQL, relational database concepts, and the SQL language to those who are new to any one
of these aspects. We only assume some general knowledge about how to use computers. No particular
Unix or programming experience is required. This part is mainly intended to give you some hands-on
experience with important aspects of the PostgreSQL system. It makes no attempt to be a complete or
thorough treatment of the topics it covers.

After you have worked through this tutorial you might want to move on to reading Part II to gain a more
formal knowledge of the SQL language, or Part IV for information about developing applications for
PostgreSQL. Those who set up and manage their own server should also read Part II1.

Chapter 1. Getting Started

1.1. Installation

Before you can use PostgreSQL you need to install it, of course. It is possible that PostgreSQL is already
installed at your site, either because it was included in your operating system distribution or because
the system administrator already installed it. If that is the case, you should obtain information from the
operating system documentation or your system administrator about how to access PostgreSQL.

If you are not sure whether PostgreSQL is already available or whether you can use it for your experimen-
tation then you can install it yourself. Doing so is not hard and it can be a good exercise. PostgreSQL can
be installed by any unprivileged user; no superuser (root) access is required.

If you are installing PostgreSQL yourself, then refer to Chapter 15 for instructions on installation, and
return to this guide when the installation is complete. Be sure to follow closely the section about setting
up the appropriate environment variables.

If your site administrator has not set things up in the default way, you might have some more work to
do. For example, if the database server machine is a remote machine, you will need to set the PGHOST
environment variable to the name of the database server machine. The environment variable PGPORT might
also have to be set. The bottom line is this: if you try to start an application program and it complains
that it cannot connect to the database, you should consult your site administrator or, if that is you, the
documentation to make sure that your environment is properly set up. If you did not understand the
preceding paragraph then read the next section.

1.2. Architectural Fundamentals

Before we proceed, you should understand the basic PostgreSQL system architecture. Understanding how
the parts of PostgreSQL interact will make this chapter somewhat clearer.

In database jargon, PostgreSQL uses a client/server model. A PostgreSQL session consists of the follow-
ing cooperating processes (programs):

« A server process, which manages the database files, accepts connections to the database from client
applications, and performs database actions on behalf of the clients. The database server program is
called postgres.

« The user’s client (frontend) application that wants to perform database operations. Client applications
can be very diverse in nature: a client could be a text-oriented tool, a graphical application, a web server
that accesses the database to display web pages, or a specialized database maintenance tool. Some client
applications are supplied with the PostgreSQL distribution; most are developed by users.

As is typical of client/server applications, the client and the server can be on different hosts. In that case
they communicate over a TCP/IP network connection. You should keep this in mind, because the files that
can be accessed on a client machine might not be accessible (or might only be accessible using a different
file name) on the database server machine.

Chapter 1. Getting Started

The PostgreSQL server can handle multiple concurrent connections from clients. To achieve this it starts
(“forks”) a new process for each connection. From that point on, the client and the new server process
communicate without intervention by the original postgres process. Thus, the master server process is
always running, waiting for client connections, whereas client and associated server processes come and
go. (All of this is of course invisible to the user. We only mention it here for completeness.)

1.3. Creating a Database

The first test to see whether you can access the database server is to try to create a database. A running
PostgreSQL server can manage many databases. Typically, a separate database is used for each project or
for each user.

Possibly, your site administrator has already created a database for your use. He should have told you
what the name of your database is. In that case you can omit this step and skip ahead to the next section.

To create a new database, in this example named mydb, you use the following command:

$ createdb mydb
If this produces no response then this step was successful and you can skip over the remainder of this
section.

If you see a message similar to:
createdb: command not found

then PostgreSQL was not installed properly. Either it was not installed at all or your shell’s search path
was not set to include it. Try calling the command with an absolute path instead:

$ /usr/local/pgsql/bin/createdb mydb
The path at your site might be different. Contact your site administrator or check the installation instruc-
tions to correct the situation.

Another response could be this:

createdb: could not connect to database postgres: could not connect to server: No such file
Is the server running locally and accepting
connections on Unix domain socket "/tmp/.s.PGSQL.5432"?

This means that the server was not started, or it was not started where createdb expected it. Again, check
the installation instructions or consult the administrator.

Another response could be this:
createdb: could not connect to database postgres: FATAL: role "Jjoe" does not exist

where your own login name is mentioned. This will happen if the administrator has not created a Post-
greSQL user account for you. (PostgreSQL user accounts are distinct from operating system user ac-
counts.) If you are the administrator, see Chapter 20 for help creating accounts. You will need to become
the operating system user under which PostgreSQL was installed (usually postgres) to create the first
user account. It could also be that you were assigned a PostgreSQL user name that is different from your

Chapter 1. Getting Started

operating system user name; in that case you need to use the —U switch or set the PGUSER environment
variable to specify your PostgreSQL user name.

If you have a user account but it does not have the privileges required to create a database, you will see
the following:

createdb: database creation failed: ERROR: permission denied to create database

Not every user has authorization to create new databases. If PostgreSQL refuses to create databases for
you then the site administrator needs to grant you permission to create databases. Consult your site ad-
ministrator if this occurs. If you installed PostgreSQL yourself then you should log in for the purposes of
this tutorial under the user account that you started the server as. '

You can also create databases with other names. PostgreSQL allows you to create any number of databases
at a given site. Database names must have an alphabetic first character and are limited to 63 bytes in length.
A convenient choice is to create a database with the same name as your current user name. Many tools
assume that database name as the default, so it can save you some typing. To create that database, simply

type:

$ createdb

If you do not want to use your database anymore you can remove it. For example, if you are the owner
(creator) of the database mydb, you can destroy it using the following command:

$ dropdb mydb

(For this command, the database name does not default to the user account name. You always need to
specify it.) This action physically removes all files associated with the database and cannot be undone, so
this should only be done with a great deal of forethought.

More about createdb and dropdb can be found in createdb and dropdb respectively.

1.4. Accessing a Database

Once you have created a database, you can access it by:

+ Running the PostgreSQL interactive terminal program, called psql, which allows you to interactively
enter, edit, and execute SQL commands.

- Using an existing graphical frontend tool like pgAdmin or an office suite with ODBC or JDBC support
to create and manipulate a database. These possibilities are not covered in this tutorial.

- Writing a custom application, using one of the several available language bindings. These possibilities
are discussed further in Part IV.

1. As an explanation for why this works: PostgreSQL user names are separate from operating system user accounts. When you
connect to a database, you can choose what PostgreSQL user name to connect as; if you don’t, it will default to the same name
as your current operating system account. As it happens, there will always be a PostgreSQL user account that has the same name
as the operating system user that started the server, and it also happens that that user always has permission to create databases.
Instead of logging in as that user you can also specify the —U option everywhere to select a PostgreSQL user name to connect as.

Chapter 1. Getting Started

You probably want to start up psql to try the examples in this tutorial. It can be activated for the mydb
database by typing the command:

$ psql mydb

If you do not supply the database name then it will default to your user account name. You already
discovered this scheme in the previous section using createdb.

In psql, you will be greeted with the following message:

psgl (9.0.4)
Type "help" for help.

mydb=>
The last line could also be:
mydb=#

That would mean you are a database superuser, which is most likely the case if you installed PostgreSQL
yourself. Being a superuser means that you are not subject to access controls. For the purposes of this
tutorial that is not important.

If you encounter problems starting psgl then go back to the previous section. The diagnostics of
createdb and psql are similar, and if the former worked the latter should work as well.

The last line printed out by psql is the prompt, and it indicates that psql is listening to you and that you
can type SQL queries into a work space maintained by psgl. Try out these commands:

mydb=> SELECT version();
version

PostgreSQL 9.0.4 on i586-pc-linux-gnu, compiled by GCC 2.96, 32-bit
(1 row)

mydb=> SELECT current_date;
date

2002-08-31
(1 row)

mydb=> SELECT 2 + 2;
?column?

The psgl program has a number of internal commands that are not SQL commands. They begin with
the backslash character, “\”. For example, you can get help on the syntax of various PostgreSQL SQL
commands by typing:

mydb=> \h

Chapter 1. Getting Started

To get out of psql, type:
mydb=> \q

and psgl will quit and return you to your command shell. (For more internal commands, type \? at the
psql prompt.) The full capabilities of psql are documented in psql. If PostgreSQL is installed correctly
you can also type man psqgl at the operating system shell prompt to see the documentation. In this tutorial
we will not use these features explicitly, but you can use them yourself when it is helpful.

Chapter 2. The SQL Language

2.1. Introduction

This chapter provides an overview of how to use SQL to perform simple operations. This tutorial is only
intended to give you an introduction and is in no way a complete tutorial on SQL. Numerous books have
been written on SQL, including Understanding the New SQL and A Guide to the SQL Standard. You
should be aware that some PostgreSQL language features are extensions to the standard.

In the examples that follow, we assume that you have created a database named mydb, as described in the
previous chapter, and have been able to start psql.

Examples in this manual can also be found in the PostgreSQL source distribution in the directory
src/tutorial/. (Binary distributions of PostgreSQL might not compile these files.) To use those files,
first change to that directory and run make:

$ ed/src/tutorial
S make

This creates the scripts and compiles the C files containing user-defined functions and types. Then, to start
the tutorial, do the following:

S ed/tutorial
$ psql -s mydb

mydb=> \i basics.sql

The \i command reads in commands from the specified file. psql’s —s option puts you in single step
mode which pauses before sending each statement to the server. The commands used in this section are in
the file basics.sql.

2.2. Concepts

PostgreSQL is a relational database management system (RDBMS). That means it is a system for man-
aging data stored in relations. Relation is essentially a mathematical term for fable. The notion of storing
data in tables is so commonplace today that it might seem inherently obvious, but there are a number of
other ways of organizing databases. Files and directories on Unix-like operating systems form an example
of a hierarchical database. A more modern development is the object-oriented database.

Each table is a named collection of rows. Each row of a given table has the same set of named columns,
and each column is of a specific data type. Whereas columns have a fixed order in each row, it is important
to remember that SQL does not guarantee the order of the rows within the table in any way (although they
can be explicitly sorted for display).

Tables are grouped into databases, and a collection of databases managed by a single PostgreSQL server
instance constitutes a database cluster.

Chapter 2. The SQL Language

2.3. Creating a New Table

You can create a new table by specifying the table name, along with all column names and their types:

CREATE TABLE weather (

city varchar (80),

temp_lo int, -— low temperature
temp_hi int, —— high temperature
prcp real, —-— precipitation
date date

)

You can enter this into psgl with the line breaks. psgl will recognize that the command is not terminated
until the semicolon.

White space (i.e., spaces, tabs, and newlines) can be used freely in SQL commands. That means you can
type the command aligned differently than above, or even all on one line. Two dashes (“--") introduce
comments. Whatever follows them is ignored up to the end of the line. SQL is case insensitive about key
words and identifiers, except when identifiers are double-quoted to preserve the case (not done above).

varchar (80) specifies a data type that can store arbitrary character strings up to 80 characters in length.
int is the normal integer type. real is a type for storing single precision floating-point numbers. date
should be self-explanatory. (Yes, the column of type date is also named date. This might be convenient
or confusing — you choose.)

PostgreSQL supports the standard SQL types int, smallint, real, double precision, char (N),
varchar (N), date, time, timestamp, and interval, as well as other types of general utility and a
rich set of geometric types. PostgreSQL can be customized with an arbitrary number of user-defined data
types. Consequently, type names are not key words in the syntax, except where required to support special
cases in the SQL standard.

The second example will store cities and their associated geographical location:

CREATE TABLE cities (
name varchar (80),
location point

)i

The point type is an example of a PostgreSQL-specific data type.

Finally, it should be mentioned that if you don’t need a table any longer or want to recreate it differently
you can remove it using the following command:

DROP TABLE tablename;

2.4. Populating a Table With Rows

The INSERT statement is used to populate a table with rows:

INSERT INTO weather VALUES (’San Francisco’, 46, 50, 0.25, 71994-11-27");

Chapter 2. The SQL Language

Note that all data types use rather obvious input formats. Constants that are not simple numeric values
usually must be surrounded by single quotes (), as in the example. The date type is actually quite flexible
in what it accepts, but for this tutorial we will stick to the unambiguous format shown here.

The point type requires a coordinate pair as input, as shown here:

INSERT INTO cities VALUES (’San Francisco’, ' (-194.0, 53.0)");

The syntax used so far requires you to remember the order of the columns. An alternative syntax allows
you to list the columns explicitly:

INSERT INTO weather (city, temp_lo, temp_hi, prcp, date)
VALUES (’San Francisco’, 43, 57, 0.0, 71994-11-29");

You can list the columns in a different order if you wish or even omit some columns, e.g., if the precipi-
tation is unknown:

INSERT INTO weather (date, city, temp_hi, temp_lo)
VALUES (’1994-11-29’, 'Hayward’, 54, 37);

Many developers consider explicitly listing the columns better style than relying on the order implicitly.
Please enter all the commands shown above so you have some data to work with in the following sections.

You could also have used copy to load large amounts of data from flat-text files. This is usually faster
because the copYy command is optimized for this application while allowing less flexibility than INSERT.
An example would be:

COPY weather FROM ’ /home/user/weather.txt’;

where the file name for the source file must be available to the backend server machine, not the client,
since the backend server reads the file directly. You can read more about the CopY command in COPY.

2.5. Querying a Table

To retrieve data from a table, the table is queried. An SQL SELECT statement is used to do this. The
statement is divided into a select list (the part that lists the columns to be returned), a table list (the part
that lists the tables from which to retrieve the data), and an optional qualification (the part that specifies
any restrictions). For example, to retrieve all the rows of table weather, type:

SELECT * FROM weather;
Here = is a shorthand for “all columns”. ! So the same result would be had with:
SELECT city, temp_lo, temp_hi, prcp, date FROM weather;

The output should be:

1. While seLECT = is useful for off-the-cuff queries, it is widely considered bad style in production code, since adding a column
to the table would change the results.

Chapter 2. The SQL Language

city | temp_lo | temp_hi | prcp | date
777777777777777 B mman s T
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 43 | 57 | 0 | 1994-11-29
Hayward \ 37 | 54 | | 1994-11-29
(3 rows)

You can write expressions, not just simple column references, in the select list. For example, you can do:

SELECT city, (temp_hi+temp_lo)/2 AS temp_avg, date FROM weather;

This should give:

city | temp_avg | date
_______________ o
San Francisco | 48 | 1994-11-27
San Francisco | 50 | 1994-11-29
Hayward | 45 | 1994-11-29
(3 rows)

Notice how the AS clause is used to relabel the output column. (The As clause is optional.)

A query can be “qualified” by adding a WHERE clause that specifies which rows are wanted. The WHERE
clause contains a Boolean (truth value) expression, and only rows for which the Boolean expression is
true are returned. The usual Boolean operators (AND, OR, and NOT) are allowed in the qualification. For
example, the following retrieves the weather of San Francisco on rainy days:

SELECT x FROM weather
WHERE city = ’San Francisco’ AND prcp > 0.0;

Result:

San Francisco
(1 row)

You can request that the results of a query be returned in sorted order:

SELECT * FROM weather
ORDER BY city;

city | temp_lo | temp_hi | prcp | date
——————————————— B S
Hayward \ 37 | 54 | | 1994-11-29
San Francisco | 43 | 57 | 0 | 1994-11-29
San Francisco | 46 | 50 | 0.25 | 1994-11-27

In this example, the sort order isn’t fully specified, and so you might get the San Francisco rows in either
order. But you’d always get the results shown above if you do:

Chapter 2. The SQL Language

SELECT » FROM weather
ORDER BY city, temp_lo;

You can request that duplicate rows be removed from the result of a query:

SELECT DISTINCT city
FROM weather;

Hayward
San Francisco
(2 rows)

Here again, the result row ordering might vary. You can ensure consistent results by using DISTINCT and
ORDER BY together: 2

SELECT DISTINCT city
FROM weather
ORDER BY city;

2.6. Joins Between Tables

Thus far, our queries have only accessed one table at a time. Queries can access multiple tables at once, or
access the same table in such a way that multiple rows of the table are being processed at the same time.
A query that accesses multiple rows of the same or different tables at one time is called a join query. As an
example, say you wish to list all the weather records together with the location of the associated city. To
do that, we need to compare the city column of each row of the weather table with the name column
of all rows in the cities table, and select the pairs of rows where these values match.

Note: This is only a conceptual model. The join is usually performed in a more efficient manner than
actually comparing each possible pair of rows, but this is invisible to the user.

This would be accomplished by the following query:
SELECT =*

FROM weather, cities
WHERE city = name;

city | temp_lo | temp_hi | prcp | date | name | location
777777777777777 B R S S S

San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)

San Francisco | 43 | 57 | 0 | 1994-11-29 | San Francisco | (-194,53)

(2 rows)

2. Insome database systems, including older versions of PostgreSQL, the implementation of DISTINCT automatically orders the
rows and so ORDER BY is unnecessary. But this is not required by the SQL standard, and current PostgreSQL does not guarantee
that DISTINCT causes the rows to be ordered.

10

Chapter 2. The SQL Language

Observe two things about the result set:

« There is no result row for the city of Hayward. This is because there is no matching entry in the cities
table for Hayward, so the join ignores the unmatched rows in the weather table. We will see shortly
how this can be fixed.

+ There are two columns containing the city name. This is correct because the lists of columns from
the weather and cities tables are concatenated. In practice this is undesirable, though, so you will
probably want to list the output columns explicitly rather than using *:

SELECT city, temp_lo, temp_hi, prcp, date, location
FROM weather, cities
WHERE city = name;

Exercise: Attempt to determine the semantics of this query when the WHERE clause is omitted.

Since the columns all had different names, the parser automatically found which table they belong to. If
there were duplicate column names in the two tables you’d need to gualify the column names to show
which one you meant, as in:

SELECT weather.city, weather.temp_lo, weather.temp_hi,
weather.prcp, weather.date, cities.location
FROM weather, cities
WHERE cities.name = weather.city;

It is widely considered good style to qualify all column names in a join query, so that the query won’t fail
if a duplicate column name is later added to one of the tables.

Join queries of the kind seen thus far can also be written in this alternative form:

SELECT «
FROM weather INNER JOIN cities ON (weather.city = cities.name);

This syntax is not as commonly used as the one above, but we show it here to help you understand the
following topics.

Now we will figure out how we can get the Hayward records back in. What we want the query to do is
to scan the weather table and for each row to find the matching cities row(s). If no matching row is
found we want some “empty values” to be substituted for the cities table’s columns. This kind of query
is called an outer join. (The joins we have seen so far are inner joins.) The command looks like this:

SELECT *
FROM weather LEFT OUTER JOIN cities ON (weather.city = cities.name);

city | temp_lo | temp_hi | prcp | date | name | location
——————————————— Bt E e st e gt e
Hayward \ 37 | 54 | | 1994-11-29 | |
San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)
San Francisco | 43 | 57 | 0 | 1994-11-29 | San Francisco | (-194,53)

(3 rows)

11

Chapter 2. The SQL Language

This query is called a left outer join because the table mentioned on the left of the join operator will have
each of its rows in the output at least once, whereas the table on the right will only have those rows output
that match some row of the left table. When outputting a left-table row for which there is no right-table
match, empty (null) values are substituted for the right-table columns.

Exercise: There are also right outer joins and full outer joins. Try to find out what those do.

We can also join a table against itself. This is called a self join. As an example, suppose we wish to find
all the weather records that are in the temperature range of other weather records. So we need to compare
the temp_1lo and temp_hi columns of each weather row to the temp_1lo and temp_hi columns of all
other weather rows. We can do this with the following query:

SELECT Wl.city, Wl.temp_lo AS low, Wl.temp_hi AS high,
W2.city, W2.temp_lo AS low, W2.temp_hi AS high
FROM weather W1, weather W2
WHERE Wl.temp_lo < W2.temp_lo
AND Wl.temp_hi > W2.temp_hi;

city | low | high | city | low | high
——————————————— Bt T e et e et
San Francisco | 43 | 57 | San Francisco | 46 | 50
Hayward | 37 | 54 | San Francisco | 46 | 50
(2 rows)

Here we have relabeled the weather table as W1 and w2 to be able to distinguish the left and right side of
the join. You can also use these kinds of aliases in other queries to save some typing, e.g.:

SELECT =«
FROM weather w, cities c
WHERE w.city = c.name;

You will encounter this style of abbreviating quite frequently.

2.7. Aggregate Functions

Like most other relational database products, PostgreSQL supports aggregate functions. An aggregate
function computes a single result from multiple input rows. For example, there are aggregates to compute
the count, sum, avg (average), max (maximum) and min (minimum) over a set of rows.

As an example, we can find the highest low-temperature reading anywhere with:

SELECT max (temp_lo) FROM weather;

If we wanted to know what city (or cities) that reading occurred in, we might try:

12

Chapter 2. The SQL Language

SELECT city FROM weather WHERE temp_lo = max(temp_1lo); WRONG

but this will not work since the aggregate max cannot be used in the WHERE clause. (This restriction
exists because the WHERE clause determines which rows will be included in the aggregate calculation; so
obviously it has to be evaluated before aggregate functions are computed.) However, as is often the case
the query can be restated to accomplish the desired result, here by using a subquery:

SELECT city FROM weather

WHERE temp_lo = (SELECT max(temp_lo) FROM weather);

San Francisco
(1 row)
This is OK because the subquery is an independent computation that computes its own aggregate sepa-
rately from what is happening in the outer query.
Aggregates are also very useful in combination with GROUP BY clauses. For example, we can get the

maximum low temperature observed in each city with:

SELECT city, max(temp_lo)
FROM weather
GROUP BY city;

city | max
,,,,,,,,,,,,,,, b
Hayward | 37
San Francisco | 46

(2 rows)

which gives us one output row per city. Each aggregate result is computed over the table rows matching

that city. We can filter these grouped rows using HAVING:

SELECT city, max(temp_lo)
FROM weather
GROUP BY city
HAVING max (temp_lo) < 40;

cilty | max
_________ IS
Hayward | 37
(1 row)

which gives us the same results for only the cities that have all temp_10 values below 40. Finally, if we

only care about cities whose names begin with “s”, we might do:

SELECT city, max(temp_lo)
FROM weather
WHERE city LIKE ’'S%'®
GROUP BY city
HAVING max (temp_lo) < 40;

13

Chapter 2. The SQL Language

O The LIKE operator does pattern matching and is explained in Section 9.7.

It is important to understand the interaction between aggregates and SQL’s WHERE and HAVING clauses.
The fundamental difference between WHERE and HAVING is this: WHERE selects input rows before groups
and aggregates are computed (thus, it controls which rows go into the aggregate computation), whereas
HAVING selects group rows after groups and aggregates are computed. Thus, the WHERE clause must not
contain aggregate functions; it makes no sense to try to use an aggregate to determine which rows will
be inputs to the aggregates. On the other hand, the HAVING clause always contains aggregate functions.
(Strictly speaking, you are allowed to write a HAVING clause that doesn’t use aggregates, but it’s seldom
useful. The same condition could be used more efficiently at the WHERE stage.)

In the previous example, we can apply the city name restriction in WHERE, since it needs no aggregate.
This is more efficient than adding the restriction to HAVING, because we avoid doing the grouping and
aggregate calculations for all rows that fail the WHERE check.

2.8. Updates

You can update existing rows using the UPDATE command. Suppose you discover the temperature readings
are all off by 2 degrees after November 28. You can correct the data as follows:

UPDATE weather

SET temp_hi = temp_hi - 2, temp_lo = temp_lo - 2
WHERE date > 71994-11-28';

Look at the new state of the data:

SELECT = FROM weather;

city | temp_lo | temp_hi | prcp | date
——————————————— Bt B s mattt el S
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29
Hayward | 35 | 52 | | 1994-11-29
(3 rows)

2.9. Deletions

Rows can be removed from a table using the DELETE command. Suppose you are no longer interested in
the weather of Hayward. Then you can do the following to delete those rows from the table:

DELETE FROM weather WHERE city = ’'Hayward’;

All weather records belonging to Hayward are removed.

14

SELECT x FROM weather;

city | temp_lo | temp_hi
,,,,,,,,,,,,,,, e

San Francisco | 46 | 50

San Francisco | 41 | 55

(2 rows)

One should be wary of statements of the form

DELETE FROM tablename;

Chapter 2. The SQL Language

| prcp | date
Fm———— Fmm
| 0.25 | 1994-11-27
| 0 | 1994-11-29

Without a qualification, DELETE will remove all rows from the given table, leaving it empty. The system

will not request confirmation before doing this!

15

Chapter 3. Advanced Features

3.1. Introduction

In the previous chapter we have covered the basics of using SQL to store and access your data in Post-
greSQL. We will now discuss some more advanced features of SQL that simplify management and prevent
loss or corruption of your data. Finally, we will look at some PostgreSQL extensions.

This chapter will on occasion refer to examples found in Chapter 2 to change or improve them, so it will be
useful to have read that chapter. Some examples from this chapter can also be found in advanced. sql in
the tutorial directory. This file also contains some sample data to load, which is not repeated here. (Refer
to Section 2.1 for how to use the file.)

3.2. Views

Refer back to the queries in Section 2.6. Suppose the combined listing of weather records and city location
is of particular interest to your application, but you do not want to type the query each time you need it.
You can create a view over the query, which gives a name to the query that you can refer to like an ordinary
table:

CREATE VIEW myview AS
SELECT city, temp_lo, temp_hi, prcp, date, location
FROM weather, cities
WHERE city = name;

SELECT * FROM myview;

Making liberal use of views is a key aspect of good SQL database design. Views allow you to encapsu-
late the details of the structure of your tables, which might change as your application evolves, behind
consistent interfaces.

Views can be used in almost any place a real table can be used. Building views upon other views is not
uncommon.

3.3. Foreign Keys

Recall the weather and cities tables from Chapter 2. Consider the following problem: You want to
make sure that no one can insert rows in the weather table that do not have a matching entry in the
cities table. This is called maintaining the referential integrity of your data. In simplistic database
systems this would be implemented (if at all) by first looking at the cities table to check if a matching
record exists, and then inserting or rejecting the new weather records. This approach has a number of
problems and is very inconvenient, so PostgreSQL can do this for you.

The new declaration of the tables would look like this:

16

Chapter 3. Advanced Features

CREATE TABLE cities (
city varchar (80) primary key,
location point

)i

CREATE TABLE weather (
city varchar (80) references cities(city),
temp_1lo int,
temp_hi int,
prcp real,
date date
)i

Now try inserting an invalid record:
INSERT INTO weather VALUES (’'Berkeley’, 45, 53, 0.0, ’1994-11-28");

ERROR: 1insert or update on table "weather" violates foreign key constraint "weather_city_f
DETAIL: Key (city)=(Berkeley) is not present in table "cities".

The behavior of foreign keys can be finely tuned to your application. We will not go beyond this simple
example in this tutorial, but just refer you to Chapter 5 for more information. Making correct use of foreign
keys will definitely improve the quality of your database applications, so you are strongly encouraged to
learn about them.

3.4. Transactions

Transactions are a fundamental concept of all database systems. The essential point of a transaction is that
it bundles multiple steps into a single, all-or-nothing operation. The intermediate states between the steps
are not visible to other concurrent transactions, and if some failure occurs that prevents the transaction
from completing, then none of the steps affect the database at all.

For example, consider a bank database that contains balances for various customer accounts, as well as
total deposit balances for branches. Suppose that we want to record a payment of $100.00 from Alice’s
account to Bob’s account. Simplifying outrageously, the SQL commands for this might look like:

UPDATE accounts SET balance = balance - 100.00
WHERE name = 'Alice’;
UPDATE branches SET balance = balance - 100.00
WHERE name = (SELECT branch_name FROM accounts WHERE name = ’'Alice’);
UPDATE accounts SET balance = balance + 100.00
WHERE name = ’'Bob’;
UPDATE branches SET balance = balance + 100.00
WHERE name = (SELECT branch_name FROM accounts WHERE name = ’'Bob’);

The details of these commands are not important here; the important point is that there are several separate
updates involved to accomplish this rather simple operation. Our bank’s officers will want to be assured
that either all these updates happen, or none of them happen. It would certainly not do for a system failure

17

Chapter 3. Advanced Features

to result in Bob receiving $100.00 that was not debited from Alice. Nor would Alice long remain a happy
customer if she was debited without Bob being credited. We need a guarantee that if something goes
wrong partway through the operation, none of the steps executed so far will take effect. Grouping the
updates into a transaction gives us this guarantee. A transaction is said to be atomic: from the point of
view of other transactions, it either happens completely or not at all.

We also want a guarantee that once a transaction is completed and acknowledged by the database system,
it has indeed been permanently recorded and won’t be lost even if a crash ensues shortly thereafter. For
example, if we are recording a cash withdrawal by Bob, we do not want any chance that the debit to
his account will disappear in a crash just after he walks out the bank door. A transactional database
guarantees that all the updates made by a transaction are logged in permanent storage (i.e., on disk) before
the transaction is reported complete.

Another important property of transactional databases is closely related to the notion of atomic updates:
when multiple transactions are running concurrently, each one should not be able to see the incomplete
changes made by others. For example, if one transaction is busy totalling all the branch balances, it would
not do for it to include the debit from Alice’s branch but not the credit to Bob’s branch, nor vice versa.
So transactions must be all-or-nothing not only in terms of their permanent effect on the database, but
also in terms of their visibility as they happen. The updates made so far by an open transaction are in-
visible to other transactions until the transaction completes, whereupon all the updates become visible
simultaneously.

In PostgreSQL, a transaction is set up by surrounding the SQL commands of the transaction with BEGIN
and COMMIT commands. So our banking transaction would actually look like:

BEGIN;

UPDATE accounts SET balance = balance - 100.00
WHERE name = 'Alice’;

-— etc etc

COMMIT;

If, partway through the transaction, we decide we do not want to commit (perhaps we just noticed that
Alice’s balance went negative), we can issue the command ROLLBACK instead of COMMIT, and all our
updates so far will be canceled.

PostgreSQL actually treats every SQL statement as being executed within a transaction. If you do not is-
sue a BEGIN command, then each individual statement has an implicit BEGIN and (if successful) COMMIT
wrapped around it. A group of statements surrounded by BEGIN and COMMIT is sometimes called a trans-
action block.

Note: Some client libraries issue BEGIN and commIT commands automatically, so that you might get
the effect of transaction blocks without asking. Check the documentation for the interface you are
using.

It’s possible to control the statements in a transaction in a more granular fashion through the use of save-
points. Savepoints allow you to selectively discard parts of the transaction, while committing the rest.
After defining a savepoint with SAVEPOINT, you can if needed roll back to the savepoint with ROLLBACK
TO. All the transaction’s database changes between defining the savepoint and rolling back to it are dis-
carded, but changes earlier than the savepoint are kept.

18

Chapter 3. Advanced Features

After rolling back to a savepoint, it continues to be defined, so you can roll back to it several times.
Conversely, if you are sure you won’t need to roll back to a particular savepoint again, it can be released,
so the system can free some resources. Keep in mind that either releasing or rolling back to a savepoint
will automatically release all savepoints that were defined after it.

All this is happening within the transaction block, so none of it is visible to other database sessions. When
and if you commit the transaction block, the committed actions become visible as a unit to other sessions,
while the rolled-back actions never become visible at all.

Remembering the bank database, suppose we debit $100.00 from Alice’s account, and credit Bob’s ac-
count, only to find later that we should have credited Wally’s account. We could do it using savepoints
like this:

BEGIN;

UPDATE accounts SET balance = balance - 100.00
WHERE name = 'Alice’;

SAVEPOINT my_savepoint;

UPDATE accounts SET balance = balance + 100.00
WHERE name = ’'Bob’;

—-— oops ... forget that and use Wally’s account

ROLLBACK TO my_savepoint;

UPDATE accounts SET balance = balance + 100.00
WHERE name = "Wally’;

COMMIT;

This example is, of course, oversimplified, but there’s a lot of control possible in a transaction block
through the use of savepoints. Moreover, ROLLBACK TO is the only way to regain control of a transaction
block that was put in aborted state by the system due to an error, short of rolling it back completely and
starting again.

3.5. Window Functions

A window function performs a calculation across a set of table rows that are somehow related to the
current row. This is comparable to the type of calculation that can be done with an aggregate function. But
unlike regular aggregate functions, use of a window function does not cause rows to become grouped into
a single output row — the rows retain their separate identities. Behind the scenes, the window function is
able to access more than just the current row of the query result.

Here is an example that shows how to compare each employee’s salary with the average salary in his or
her department:

SELECT depname, empno, salary, avg(salary) OVER (PARTITION BY depname) FROM empsalary;

depname | empno | salary | avg
——————————— e S
develop | 11 | 5200 | 5020.0000000000000000
develop | 7 4200 | 5020.0000000000000000
develop | 9 | 4500 | 5020.0000000000000000
develop | 8 | 6000 | 5020.0000000000000000

19

Chapter 3. Advanced Features

develop | 10 | 5200 | 5020.0000000000000000
personnel | 5 | 3500 | 3700.0000000000000000
personnel | 2 3900 | 3700.0000000000000000
sales | 3 | 4800 | 4866.6666666666666667
sales | 1] 5000 | 4866.6666666666666667
sales | 4 | 4800 | 4866.6666666666666667
(10 rows)

The first three output columns come directly from the table empsalary, and there is one output row
for each row in the table. The fourth column represents an average taken across all the table rows that
have the same depname value as the current row. (This actually is the same function as the regular avg
aggregate function, but the OVER clause causes it to be treated as a window function and computed across
an appropriate set of rows.)

A window function call always contains an OVER clause following the window function’s name and ar-
gument(s). This is what syntactically distinguishes it from a regular function or aggregate function. The
OVER clause determines exactly how the rows of the query are split up for processing by the window func-
tion. The PARTITION BY list within OVER specifies dividing the rows into groups, or partitions, that share
the same values of the PARTITION BY expression(s). For each row, the window function is computed
across the rows that fall into the same partition as the current row.

Although avg will produce the same result no matter what order it processes the partition’s rows in, this is
not true of all window functions. When needed, you can control that order using ORDER BY within OVER.
Here is an example:

SELECT depname, empno, salary, rank() OVER (PARTITION BY depname ORDER BY salary DESC) FROM

depname | empno | salary | rank
77777777777 B it s
develop | 8 | 6000 | 1
develop | 10 | 5200 | 2
develop | 11 | 5200 | 2
develop | 9 | 4500 | 4
develop | 7 | 4200 | 5
personnel | 2 | 3900 | 1
personnel | 5 | 3500 | 2
sales | 1] 5000 | 1
sales | 4 | 4800 | 2
sales | 3 4800 | 2
(10 rows)

As shown here, the rank function produces a numerical rank within the current row’s partition for each
distinct ORDER BY value, in the order defined by the ORDER BY clause. rank needs no explicit parameter,
because its behavior is entirely determined by the OVER clause.

The rows considered by a window function are those of the “virtual table” produced by the query’s FROM
clause as filtered by its WHERE, GROUP BY, and HAVING clauses if any. For example, a row removed
because it does not meet the WHERE condition is not seen by any window function. A query can contain
multiple window functions that slice up the data in different ways by means of different OVER clauses, but
they all act on the same collection of rows defined by this virtual table.

We already saw that ORDER BY can be omitted if the ordering of rows is not important. It is also possible
to omit PARTITION BY, in which case there is just one partition containing all the rows.

20

Chapter 3. Advanced Features

There is another important concept associated with window functions: for each row, there is a set of rows
within its partition called its window frame. Many (but not all) window functions act only on the rows of
the window frame, rather than of the whole partition. By default, if ORDER BY is supplied then the frame
consists of all rows from the start of the partition up through the current row, plus any following rows that
are equal to the current row according to the ORDER BY clause. When ORDER BY is omitted the default
frame consists of all rows in the partition. ' Here is an example using sum:

SELECT salary, sum(salary) OVER () FROM empsalary;

salary | sum
,,,,,,,, b
5200 | 47100
5000 | 47100
3500 | 47100
4800 | 47100
3900 | 47100
4200 | 47100
4500 | 47100
4800 | 47100
6000 | 47100
5200 | 47100
(10 rows)

Above, since there is no ORDER BY in the OVER clause, the window frame is the same as the partition,
which for lack of PARTITION BY is the whole table; in other words each sum is taken over the whole
table and so we get the same result for each output row. But if we add an ORDER BY clause, we get very
different results:

SELECT salary, sum(salary) OVER (ORDER BY salary) FROM empsalary;

salary | sum
________ b
3500 | 3500
3900 | 7400
4200 | 11600
4500 | 16100
4800 | 25700
4800 | 25700
5000 | 30700
5200 | 41100
5200 | 41100
6000 | 47100
(10 rows)

Here the sum is taken from the first (lowest) salary up through the current one, including any duplicates
of the current one (notice the results for the duplicated salaries).

Window functions are permitted only in the SELECT list and the ORDER BY clause of the query. They are
forbidden elsewhere, such as in GROUP BY, HAVING and WHERE clauses. This is because they logically
execute after the processing of those clauses. Also, window functions execute after regular aggregate

1. There are options to define the window frame in other ways, but this tutorial does not cover them. See Section 4.2.8 for details.

21

Chapter 3. Advanced Features

functions. This means it is valid to include an aggregate function call in the arguments of a window
function, but not vice versa.

If there is a need to filter or group rows after the window calculations are performed, you can use a
sub-select. For example:

SELECT depname, empno, salary, enroll_date
FROM
(SELECT depname, empno, salary, enroll_date,
rank () OVER (PARTITION BY depname ORDER BY salary DESC, empno) AS pos
FROM empsalary
) AS ss
WHERE pos < 3;

The above query only shows the rows from the inner query having rank less than 3.

When a query involves multiple window functions, it is possible to write out each one with a separate
OVER clause, but this is duplicative and error-prone if the same windowing behavior is wanted for several
functions. Instead, each windowing behavior can be named in a WINDOW clause and then referenced in
OVER. For example:

SELECT sum(salary) OVER w, avg(salary) OVER w
FROM empsalary
WINDOW w AS (PARTITION BY depname ORDER BY salary DESC);

More details about window functions can be found in Section 4.2.8, Section 9.19, Section 7.2.4, and the
SELECT reference page.

3.6. Inheritance

Inheritance is a concept from object-oriented databases. It opens up interesting new possibilities of
database design.

Let’s create two tables: A table cities and a table capitals. Naturally, capitals are also cities, so you
want some way to show the capitals implicitly when you list all cities. If you’re really clever you might
invent some scheme like this:

CREATE TABLE capitals (
name text,
population real,
altitude int, -—— (in ft)
state char (2)
)i

CREATE TABLE non_capitals (
name text,
population real,
altitude int -—— (in ft)
)i

22

Chapter 3. Advanced Features

CREATE VIEW cities AS
SELECT name, population, altitude FROM capitals
UNION
SELECT name, population, altitude FROM non_capitals;

This works OK as far as querying goes, but it gets ugly when you need to update several rows, for one
thing.

A better solution is this:

CREATE TABLE cities (

name text,

population real,

altitude int -— (in ft)
)i

CREATE TABLE capitals (
state char (2)
) INHERITS (cities);

In this case, a row of capitals inherits all columns (name, population, and altitude) from its
parent, cities. The type of the column name is text, a native PostgreSQL type for variable length
character strings. State capitals have an extra column, state, that shows their state. In PostgreSQL, a
table can inherit from zero or more other tables.

For example, the following query finds the names of all cities, including state capitals, that are located at
an altitude over 500 feet:

SELECT name, altitude
FROM cities
WHERE altitude > 500;

which returns:

name | altitude
,,,,,,,,,,, [P
Las Vegas | 2174
Mariposa | 1953
Madison | 845
(3 rows)

On the other hand, the following query finds all the cities that are not state capitals and are situated at an
altitude of 500 feet or higher:

SELECT name, altitude
FROM ONLY cities

WHERE altitude > 500;

name | altitude

23

Chapter 3. Advanced Features

Mariposa | 1953
(2 rows)

Here the ONLY before cities indicates that the query should be run over only the cities table, and not
tables below cities in the inheritance hierarchy. Many of the commands that we have already discussed
— SELECT, UPDATE, and DELETE — support this ONLY notation.

Note: Although inheritance is frequently useful, it has not been integrated with unique constraints or
foreign keys, which limits its usefulness. See Section 5.8 for more detail.

3.7. Conclusion

PostgreSQL has many features not touched upon in this tutorial introduction, which has been oriented
toward newer users of SQL. These features are discussed in more detail in the remainder of this book.

If you feel you need more introductory material, please visit the PostgreSQL web site? for links to more
resources.

2. http://www.postgresql.org

24

Il. The SQL Language

This part describes the use of the SQL language in PostgreSQL. We start with describing the general
syntax of SQL, then explain how to create the structures to hold data, how to populate the database, and
how to query it. The middle part lists the available data types and functions for use in SQL commands.
The rest treats several aspects that are important for tuning a database for optimal performance.

The information in this part is arranged so that a novice user can follow it start to end to gain a full un-
derstanding of the topics without having to refer forward too many times. The chapters are intended to be
self-contained, so that advanced users can read the chapters individually as they choose. The information
in this part is presented in a narrative fashion in topical units. Readers looking for a complete description
of a particular command should see Part VI.

Readers of this part should know how to connect to a PostgreSQL database and issue SQL commands.
Readers that are unfamiliar with these issues are encouraged to read Part I first. SQL commands are
typically entered using the PostgreSQL interactive terminal psql, but other programs that have similar
functionality can be used as well.

Chapter 4. SQL Syntax

This chapter describes the syntax of SQL. It forms the foundation for understanding the following chapters
which will go into detail about how SQL commands are applied to define and modify data.

We also advise users who are already familiar with SQL to read this chapter carefully because it contains
several rules and concepts that are implemented inconsistently among SQL databases or that are specific
to PostgreSQL.

4.1. Lexical Structure

SQL input consists of a sequence of commands. A command is composed of a sequence of tokens, ter-
TRL

minated by a semicolon (*;”). The end of the input stream also terminates a command. Which tokens are
valid depends on the syntax of the particular command.

A token can be a key word, an identifier, a quoted identifier, a literal (or constant), or a special character
symbol. Tokens are normally separated by whitespace (space, tab, newline), but need not be if there is no
ambiguity (which is generally only the case if a special character is adjacent to some other token type).

For example, the following is (syntactically) valid SQL input:

SELECT % FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
INSERT INTO MY_TABLE VALUES (3, ’"hi there’);

This is a sequence of three commands, one per line (although this is not required; more than one command
can be on a line, and commands can usefully be split across lines).

Additionally, comments can occur in SQL input. They are not tokens, they are effectively equivalent to
whitespace.

The SQL syntax is not very consistent regarding what tokens identify commands and which are operands
or parameters. The first few tokens are generally the command name, so in the above example we would
usually speak of a “SELECT”, an “UPDATE”, and an “INSERT” command. But for instance the UPDATE
command always requires a SET token to appear in a certain position, and this particular variation of
INSERT also requires a VALUES in order to be complete. The precise syntax rules for each command are
described in Part VI.

4.1.1. Identifiers and Key Words

Tokens such as SELECT, UPDATE, or VALUES in the example above are examples of key words, that is,
words that have a fixed meaning in the SQL language. The tokens MY_TABLE and A are examples of
identifiers. They identify names of tables, columns, or other database objects, depending on the command
they are used in. Therefore they are sometimes simply called “names”. Key words and identifiers have
the same lexical structure, meaning that one cannot know whether a token is an identifier or a key word
without knowing the language. A complete list of key words can be found in Appendix C.

SQL identifiers and key words must begin with a letter (a-z, but also letters with diacritical marks and
non-Latin letters) or an underscore (_). Subsequent characters in an identifier or key word can be letters,
underscores, digits (0-9), or dollar signs ($). Note that dollar signs are not allowed in identifiers according

27

Chapter 4. SQL Syntax

to the letter of the SQL standard, so their use might render applications less portable. The SQL standard
will not define a key word that contains digits or starts or ends with an underscore, so identifiers of this
form are safe against possible conflict with future extensions of the standard.

The system uses no more than NAMEDATALEN-1 bytes of an identifier; longer names can be written
in commands, but they will be truncated. By default, NAMEDATALEN is 64 so the maximum identifier
length is 63 bytes. If this limit is problematic, it can be raised by changing the NAMEDATALEN constant in

src/include/pg_config_manual.h.

Key words and unquoted identifiers are case insensitive. Therefore:

UPDATE MY_TABLE SET A = 5;

can equivalently be written as:
uPDaTE my_TabLE SeT a = 5;

A convention often used is to write key words in upper case and names in lower case, e.g.:

UPDATE my_table SET a = 5;

There is a second kind of identifier: the delimited identifier or quoted identifier. It is formed by enclosing
an arbitrary sequence of characters in double-quotes ("). A delimited identifier is always an identifier,
never a key word. So "select" could be used to refer to a column or table named “select”, whereas an
unquoted select would be taken as a key word and would therefore provoke a parse error when used
where a table or column name is expected. The example can be written with quoted identifiers like this:

UPDATE "my_table" SET "a" = 5;

Quoted identifiers can contain any character, except the character with code zero. (To include a double
quote, write two double quotes.) This allows constructing table or column names that would otherwise
not be possible, such as ones containing spaces or ampersands. The length limitation still applies.

A variant of quoted identifiers allows including escaped Unicode characters identified by their code points.
This variant starts with Us (upper or lower case U followed by ampersand) immediately before the opening
double quote, without any spaces in between, for example Us "foo". (Note that this creates an ambiguity
with the operator &. Use spaces around the operator to avoid this problem.) Inside the quotes, Unicode
characters can be specified in escaped form by writing a backslash followed by the four-digit hexadecimal
code point number or alternatively a backslash followed by a plus sign followed by a six-digit hexadecimal
code point number. For example, the identifier "data" could be written as

Us"d\0061t\+000061"

The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

U&"\0441\043B\043E\043D"

If a different escape character than backslash is desired, it can be specified using the UESCAPE clause after
the string, for example:

28

Chapter 4. SQL Syntax

U&"d!0061t!+000061" UESCAPE 7!’

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
quote, a double quote, or a whitespace character. Note that the escape character is written in single quotes,
not double quotes.

To include the escape character in the identifier literally, write it twice.

The Unicode escape syntax works only when the server encoding is UTF8. When other server encodings
are used, only code points in the ASCII range (up to \007F) can be specified. Both the 4-digit and the
6-digit form can be used to specify UTF-16 surrogate pairs to compose characters with code points larger
than U+FFFF, although the availability of the 6-digit form technically makes this unnecessary. (When
surrogate pairs are used when the server encoding is UTF 8, they are first combined into a single code point
that is then encoded in UTF-8.)

Quoting an identifier also makes it case-sensitive, whereas unquoted names are always folded to lower
case. For example, the identifiers FOO, foo, and "foo" are considered the same by PostgreSQL, but
"Foo" and "FoO" are different from these three and each other. (The folding of unquoted names to lower
case in PostgreSQL is incompatible with the SQL standard, which says that unquoted names should be
folded to upper case. Thus, foo should be equivalent to "FOO" not "foo" according to the standard. If
you want to write portable applications you are advised to always quote a particular name or never quote
it.)

4.1.2. Constants

There are three kinds of implicitly-typed constants in PostgreSQL.: strings, bit strings, and numbers. Con-
stants can also be specified with explicit types, which can enable more accurate representation and more
efficient handling by the system. These alternatives are discussed in the following subsections.

4.1.2.1. String Constants

A string constant in SQL is an arbitrary sequence of characters bounded by single quotes (*), for example
"This is a string’. To include a single-quote character within a string constant, write two adjacent
single quotes, e.g., ' Dianne”s horse’. Note that this is not the same as a double-quote character (").

Two string constants that are only separated by whitespace with at least one newline are concatenated and
effectively treated as if the string had been written as one constant. For example:

SELECT ' foo’
"bar’;

is equivalent to:

SELECT ' foobar’;

but:

SELECT ' foo’ "bar’;

is not valid syntax. (This slightly bizarre behavior is specified by SQL; PostgreSQL is following the
standard.)

29

Chapter 4. SQL Syntax

4.1.2.2. String Constants with C-Style Escapes

PostgreSQL also accepts “escape” string constants, which are an extension to the SQL standard. An
escape string constant is specified by writing the letter £ (upper or lower case) just before the opening
single quote, e.g., E’ foo’. (When continuing an escape string constant across lines, write E only before
the first opening quote.) Within an escape string, a backslash character (\) begins a C-like backslash
escape sequence, in which the combination of backslash and following character(s) represent a special
byte value, as shown in Table 4-1.

Table 4-1. Backslash Escape Sequences

Backslash Escape Sequence Interpretation

\b backspace

\f form feed

\n newline

\r carriage return

\t tab

\o, \oo, \ooo (oc=0-7) octal byte value

\xh, \xhh (h=0-9,A-F) hexadecimal byte value

\uxxxx, \Uxxxxxxxx (x=0-9, A -F) 16 or 32-bit hexadecimal Unicode character value

Any other character following a backslash is taken literally. Thus, to include a backslash character, write
two backslashes (\\). Also, a single quote can be included in an escape string by writing \’, in addition
to the normal way of ”.

It is your responsibility that the byte sequences you create, especially when using the octal or hexadecimal
escapes, compose valid characters in the server character set encoding. When the server encoding is UTF-
8, then the Unicode escapes or the alternative Unicode escape syntax, explained in Section 4.1.2.3, should
be used instead. (The alternative would be doing the UTF-8 encoding by hand and writing out the bytes,
which would be very cumbersome.)

The Unicode escape syntax works fully only when the server encoding is UTF' 8. When other server encod-
ings are used, only code points in the ASCII range (up to \u007F) can be specified. Both the 4-digit and
the 8-digit form can be used to specify UTF-16 surrogate pairs to compose characters with code points
larger than U+FFFF, although the availability of the 8-digit form technically makes this unnecessary.
(When surrogate pairs are used when the server encoding is UTF 8, they are first combined into a single
code point that is then encoded in UTF-8.)

30

Chapter 4. SQL Syntax

Caution

If the configuration parameter standard_conforming_strings is off, then
PostgreSQL recognizes backslash escapes in both regular and escape
string constants. This is for backward compatibility with the historical
behavior, where backslash escapes were always recognized. Although
standard_conforming_strings currently defaults to off, the default will change
to on in a future release for improved standards compliance. Applications are
therefore encouraged to migrate away from using backslash escapes. If you need
to use a backslash escape to represent a special character, write the string
constant with an E to be sure it will be handled the same way in future releases.

In addition to standard_conforming_strings, the configuration parameters
escape_string_warning and backslash_quote govern treatment of backslashes in
string constants.

The character with the code zero cannot be in a string constant.

4.1.2.3. String Constants with Unicode Escapes

PostgreSQL also supports another type of escape syntax for strings that allows specifying arbitrary Uni-
code characters by code point. A Unicode escape string constant starts with Us (upper or lower case letter
U followed by ampersand) immediately before the opening quote, without any spaces in between, for ex-
ample Us’ foo’ . (Note that this creates an ambiguity with the operator &. Use spaces around the operator
to avoid this problem.) Inside the quotes, Unicode characters can be specified in escaped form by writing a
backslash followed by the four-digit hexadecimal code point number or alternatively a backslash followed
by a plus sign followed by a six-digit hexadecimal code point number. For example, the string ’ data’
could be written as

Us’d\0061t\+000061"
The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

Us&’\0441\043B\043E\043D"

If a different escape character than backslash is desired, it can be specified using the UESCAPE clause after
the string, for example:

U&"d!0061t!+000061” UESCAPE " !’

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
quote, a double quote, or a whitespace character.

The Unicode escape syntax works only when the server encoding is UTF8. When other server encodings
are used, only code points in the ASCII range (up to \007F) can be specified. Both the 4-digit and the
6-digit form can be used to specify UTF-16 surrogate pairs to compose characters with code points larger
than U+FFFF, although the availability of the 6-digit form technically makes this unnecessary. (When
surrogate pairs are used when the server encoding is UTF 8, they are first combined into a single code point
that is then encoded in UTF-8.)

31

Chapter 4. SQL Syntax

Also, the Unicode escape syntax for string constants only works when the configuration parameter stan-
dard_conforming_strings is turned on. This is because otherwise this syntax could confuse clients that
parse the SQL statements to the point that it could lead to SQL injections and similar security issues. If
the parameter is set to off, this syntax will be rejected with an error message.

To include the escape character in the string literally, write it twice.

4.1.2.4. Dollar-Quoted String Constants

While the standard syntax for specifying string constants is usually convenient, it can be difficult to un-
derstand when the desired string contains many single quotes or backslashes, since each of those must
be doubled. To allow more readable queries in such situations, PostgreSQL provides another way, called
“dollar quoting”, to write string constants. A dollar-quoted string constant consists of a dollar sign ($),
an optional “tag” of zero or more characters, another dollar sign, an arbitrary sequence of characters that
makes up the string content, a dollar sign, the same tag that began this dollar quote, and a dollar sign. For
example, here are two different ways to specify the string “Dianne’s horse” using dollar quoting:

SSDianne’s horses
$SomeTag$Dianne’s horse$SomeTags$

Notice that inside the dollar-quoted string, single quotes can be used without needing to be escaped.
Indeed, no characters inside a dollar-quoted string are ever escaped: the string content is always written
literally. Backslashes are not special, and neither are dollar signs, unless they are part of a sequence
matching the opening tag.

It is possible to nest dollar-quoted string constants by choosing different tags at each nesting level. This is
most commonly used in writing function definitions. For example:

Sfunction$
BEGIN
RETURN ($1 ~ S$qgS[\t\r\n\v\\]1g);
END;
Sfunction$

Here, the sequence q[\t\r\n\v\\]1qg represents a dollar-quoted literal string [\t\r\n\v\\],
which will be recognized when the function body is executed by PostgreSQL. But since the sequence
does not match the outer dollar quoting delimiter $functions, it is just some more characters within the
constant so far as the outer string is concerned.

The tag, if any, of a dollar-quoted string follows the same rules as an unquoted identifier, except that it
cannot contain a dollar sign. Tags are case sensitive, SO tagString contenttag is correct, but
$TAGS$String contenttag is not.

A dollar-quoted string that follows a keyword or identifier must be separated from it by whitespace;
otherwise the dollar quoting delimiter would be taken as part of the preceding identifier.

Dollar quoting is not part of the SQL standard, but it is often a more convenient way to write complicated
string literals than the standard-compliant single quote syntax. It is particularly useful when representing
string constants inside other constants, as is often needed in procedural function definitions. With single-
quote syntax, each backslash in the above example would have to be written as four backslashes, which
would be reduced to two backslashes in parsing the original string constant, and then to one when the
inner string constant is re-parsed during function execution.

32

Chapter 4. SQL Syntax

4.1.2.5. Bit-String Constants

Bit-string constants look like regular string constants with a B (upper or lower case) immediately before
the opening quote (no intervening whitespace), e.g., B/ 1001’ . The only characters allowed within bit-
string constants are 0 and 1.

Alternatively, bit-string constants can be specified in hexadecimal notation, using a leading x (upper or
lower case), e.g., X’ 1FF’. This notation is equivalent to a bit-string constant with four binary digits for
each hexadecimal digit.

Both forms of bit-string constant can be continued across lines in the same way as regular string constants.
Dollar quoting cannot be used in a bit-string constant.

4.1.2.6. Numeric Constants

Numeric constants are accepted in these general forms:

digits

digits. |[digits] [e[+-]digits]
[digits] .digits[e[+-]digits]
digitse[+-]digits

where digits is one or more decimal digits (O through 9). At least one digit must be before or after the
decimal point, if one is used. At least one digit must follow the exponent marker (e), if one is present.
There cannot be any spaces or other characters embedded in the constant. Note that any leading plus or
minus sign is not actually considered part of the constant; it is an operator applied to the constant.

These are some examples of valid numeric constants:

42

35

4.

.001

5e2
1.925¢-3

A numeric constant that contains neither a decimal point nor an exponent is initially presumed to be type
integer ifits value fits in type integer (32 bits); otherwise it is presumed to be type bigint if its value
fits in type bigint (64 bits); otherwise it is taken to be type numeric. Constants that contain decimal
points and/or exponents are always initially presumed to be type numeric.

The initially assigned data type of a numeric constant is just a starting point for the type resolution algo-
rithms. In most cases the constant will be automatically coerced to the most appropriate type depending
on context. When necessary, you can force a numeric value to be interpreted as a specific data type by
casting it. For example, you can force a numeric value to be treated as type real (float4) by writing:

REAL ’1.23" —-- string style
1.23::REAL —-— PostgreSQL (historical) style

These are actually just special cases of the general casting notations discussed next.

33

Chapter 4. SQL Syntax

4.1.2.7. Constants of Other Types

A constant of an arbitrary type can be entered using any one of the following notations:

type ' string’
! string’ ::type
CAST ("string’ AS type)

The string constant’s text is passed to the input conversion routine for the type called ¢ ype. The result is
a constant of the indicated type. The explicit type cast can be omitted if there is no ambiguity as to the
type the constant must be (for example, when it is assigned directly to a table column), in which case it is
automatically coerced.

The string constant can be written using either regular SQL notation or dollar-quoting.

It is also possible to specify a type coercion using a function-like syntax:
typename (' string’)

but not all type names can be used in this way; see Section 4.2.9 for details.

The ::, CAST (), and function-call syntaxes can also be used to specify run-time type conversions of
arbitrary expressions, as discussed in Section 4.2.9. To avoid syntactic ambiguity, the type ’string’
syntax can only be used to specify the type of a simple literal constant. Another restriction on the type
" string’ syntax is that it does not work for array types; use : : or CAST () to specify the type of an array
constant.

The casT () syntax conforms to SQL. The type ’string’ syntax is a generalization of the standard:
SQL specifies this syntax only for a few data types, but PostgreSQL allows it for all types. The syntax
with : : is historical PostgreSQL usage, as is the function-call syntax.

4.1.3. Operators

An operator name is a sequence of up to NAMEDATALEN-1 (63 by default) characters from the following
list:

+-F/<>=~1@# D N&I"?

There are a few restrictions on operator names, however:

+ —-and /x cannot appear anywhere in an operator name, since they will be taken as the start of a
comment.

« A multiple-character operator name cannot end in + or —, unless the name also contains at least one of
these characters:

~l@#D &I ?

For example, @- is an allowed operator name, but »- is not. This restriction allows PostgreSQL to parse
SQL-compliant queries without requiring spaces between tokens.

34

Chapter 4. SQL Syntax

When working with non-SQL-standard operator names, you will usually need to separate adjacent opera-
tors with spaces to avoid ambiguity. For example, if you have defined a left unary operator named @, you
cannot write X+@Y; you must write X« @Y to ensure that PostgreSQL reads it as two operator names not
one.

4.1.4. Special Characters

Some characters that are not alphanumeric have a special meaning that is different from being an operator.
Details on the usage can be found at the location where the respective syntax element is described. This
section only exists to advise the existence and summarize the purposes of these characters.

« A dollar sign (s) followed by digits is used to represent a positional parameter in the body of a function
definition or a prepared statement. In other contexts the dollar sign can be part of an identifier or a
dollar-quoted string constant.

« Parentheses (()) have their usual meaning to group expressions and enforce precedence. In some cases
parentheses are required as part of the fixed syntax of a particular SQL command.

« Brackets ([1) are used to select the elements of an array. See Section 8.14 for more information on
arrays.

« Commas (,) are used in some syntactical constructs to separate the elements of a list.

« The semicolon (;) terminates an SQL command. It cannot appear anywhere within a command, except
within a string constant or quoted identifier.

+ The colon (:) is used to select “slices” from arrays. (See Section 8.14.) In certain SQL dialects (such
as Embedded SQL), the colon is used to prefix variable names.

+ The asterisk (+) is used in some contexts to denote all the fields of a table row or composite value. It also
has a special meaning when used as the argument of an aggregate function, namely that the aggregate
does not require any explicit parameter.

« The period (.) is used in numeric constants, and to separate schema, table, and column names.

4.1.5. Comments

A comment is a sequence of characters beginning with double dashes and extending to the end of the line,
e.g.

—— This 1is a standard SQL comment

Alternatively, C-style block comments can be used:

/* multiline comment
* with nesting: /* nested block comment =/

*/

35

Chapter 4. SQL Syntax

where the comment begins with /+ and extends to the matching occurrence of «/. These block comments
nest, as specified in the SQL standard but unlike C, so that one can comment out larger blocks of code
that might contain existing block comments.

A comment is removed from the input stream before further syntax analysis and is effectively replaced by
whitespace.

4.1.6. Lexical Precedence

Table 4-2 shows the precedence and associativity of the operators in PostgreSQL. Most operators have
the same precedence and are left-associative. The precedence and associativity of the operators is hard-
wired into the parser. This can lead to non-intuitive behavior; for example the Boolean operators < and >
have a different precedence than the Boolean operators <= and >=. Also, you will sometimes need to add
parentheses when using combinations of binary and unary operators. For instance:

SELECT 5 ! - 6;
will be parsed as:
SELECT 5 ! (- 6);

because the parser has no idea — until it is too late — that ! is defined as a postfix operator, not an infix
one. To get the desired behavior in this case, you must write:

SELECT (5 !) - 6;

This is the price one pays for extensibility.

Table 4-2. Operator Precedence (decreasing)

Operator/Element Associativity Description
left table/column name separator
left PostgreSQL-style typecast

[] left array element selection

- right unary minus

~ left exponentiation

x /% left multiplication, division, modulo

+ - left addition, subtraction

Is IS TRUE, IS FALSE, IS

UNKNOWN, IS NULL

ISNULL test for null

NOTNULL test for not null

(any other) left all other native and user-defined
operators

IN set membership

BETWEEN range containment

36

Chapter 4. SQL Syntax

Operator/Element Associativity Description
OVERLAPS time interval overlap
LIKE ILIKE SIMILAR string pattern matching
<> less than, greater than
= right equality, assignment
NOT right logical negation

AND left logical conjunction

OR left logical disjunction

Note that the operator precedence rules also apply to user-defined operators that have the same names as
the built-in operators mentioned above. For example, if you define a “+” operator for some custom data
type it will have the same precedence as the built-in “+” operator, no matter what yours does.

When a schema-qualified operator name is used in the OPERATOR syntax, as for example in:
SELECT 3 OPERATOR (pg_catalog.+) 4;

the OPERATOR construct is taken to have the default precedence shown in Table 4-2 for “any other” oper-
ator. This is true no matter which specific operator appears inside OPERATOR () .

4.2. Value Expressions

Value expressions are used in a variety of contexts, such as in the target list of the SELECT command,
as new column values in INSERT or UPDATE, or in search conditions in a number of commands. The
result of a value expression is sometimes called a scalar, to distinguish it from the result of a table ex-
pression (which is a table). Value expressions are therefore also called scalar expressions (or even simply
expressions). The expression syntax allows the calculation of values from primitive parts using arithmetic,
logical, set, and other operations.

A value expression is one of the following:

« A constant or literal value

+ A column reference

+ A positional parameter reference, in the body of a function definition or prepared statement
+ A subscripted expression

A field selection expression

« An operator invocation

A function call

+ An aggregate expression

» A window function call

« A type cast

« A scalar subquery

37

Chapter 4. SQL Syntax

« An array constructor
« A row constructor

+ Another value expression in parentheses (used to group subexpressions and override precedence)

In addition to this list, there are a number of constructs that can be classified as an expression but do
not follow any general syntax rules. These generally have the semantics of a function or operator and are
explained in the appropriate location in Chapter 9. An example is the IS NULL clause.

We have already discussed constants in Section 4.1.2. The following sections discuss the remaining op-
tions.

4.2.1. Column References

A column can be referenced in the form:

correlation.columnname

correlation is the name of a table (possibly qualified with a schema name), or an alias for a table
defined by means of a FROM clause. The correlation name and separating dot can be omitted if the column
name is unique across all the tables being used in the current query. (See also Chapter 7.)

4.2.2. Positional Parameters

A positional parameter reference is used to indicate a value that is supplied externally to an SQL statement.
Parameters are used in SQL function definitions and in prepared queries. Some client libraries also support
specifying data values separately from the SQL command string, in which case parameters are used to
refer to the out-of-line data values. The form of a parameter reference is:

Snumber

For example, consider the definition of a function, dept, as:
CREATE FUNCTION dept (text) RETURNS dept
AS $$ SELECT * FROM dept WHERE name = $1 $$
LANGUAGE SQL;

Here the s1 references the value of the first function argument whenever the function is invoked.

4.2.3. Subscripts

If an expression yields a value of an array type, then a specific element of the array value can be extracted
by writing

expression|subscript]

38

Chapter 4. SQL Syntax

or multiple adjacent elements (an “array slice”) can be extracted by writing
expression|lower_subscript:upper_subscript]

(Here, the brackets [1 are meant to appear literally.) Each subscript is itself an expression, which
must yield an integer value.

In general the array expression must be parenthesized, but the parentheses can be omitted when the
expression to be subscripted is just a column reference or positional parameter. Also, multiple subscripts
can be concatenated when the original array is multidimensional. For example:

mytable.arraycolumn[4]
mytable.two_d_column[17] [34]
$1[10:42]
(arrayfunction(a,b)) [42]

The parentheses in the last example are required. See Section 8.14 for more about arrays.

4.2.4. Field Selection

If an expression yields a value of a composite type (row type), then a specific field of the row can be
extracted by writing

expression.fieldname

In general the row expression must be parenthesized, but the parentheses can be omitted when the
expression to be selected from is just a table reference or positional parameter. For example:

mytable.mycolumn
$1.somecolumn
(rowfunction(a,b)) .col3

(Thus, a qualified column reference is actually just a special case of the field selection syntax.) An impor-
tant special case is extracting a field from a table column that is of a composite type:

(compositecol) .somefield
(mytable.compositecol) .somefield

The parentheses are required here to show that compositecol is a column name not a table name, or
that mytable is a table name not a schema name in the second case.

4.2.5. Operator Invocations

There are three possible syntaxes for an operator invocation:

expression operator expression (binary infix operator)
operator expression (unary prefix operator)
expression operator (unary postfix operator)

39

Chapter 4. SQL Syntax

where the operator token follows the syntax rules of Section 4.1.3, or is one of the key words AND, OR,
and NOT, or is a qualified operator name in the form:

OPERATOR (schema. operatorname)

Which particular operators exist and whether they are unary or binary depends on what operators have
been defined by the system or the user. Chapter 9 describes the built-in operators.

4.2.6. Function Calls

The syntax for a function call is the name of a function (possibly qualified with a schema name), followed
by its argument list enclosed in parentheses:

function_name ([expression [, expression ...]])

For example, the following computes the square root of 2:

sqrt (2)

The list of built-in functions is in Chapter 9. Other functions can be added by the user.

The arguments can optionally have names attached. See Section 4.3 for details.

4.2.7. Aggregate Expressions

An aggregate expression represents the application of an aggregate function across the rows selected by a
query. An aggregate function reduces multiple inputs to a single output value, such as the sum or average
of the inputs. The syntax of an aggregate expression is one of the following:

aggregate_name (expression [, ... 1 | order_by clause])

aggregate_name (ALL expression [, ... 1 [order_by clause])

aggregate_name (DISTINCT expression [, ...] [order_by clause])
(

aggregate_name *)

where aggregate _name is a previously defined aggregate (possibly qualified with a schema name),
expression is any value expression that does not itself contain an aggregate expression or a window
function call, and order_by_clause is a optional ORDER BY clause as described below.

The first form of aggregate expression invokes the aggregate once for each input row. The second form is
the same as the first, since ALL is the default. The third form invokes the aggregate once for each distinct
value of the expression (or distinct set of values, for multiple expressions) found in the input rows. The
last form invokes the aggregate once for each input row; since no particular input value is specified, it is
generally only useful for the count (x) aggregate function.

Most aggregate functions ignore null inputs, so that rows in which one or more of the expression(s) yield
null are discarded. This can be assumed to be true, unless otherwise specified, for all built-in aggregates.

40

Chapter 4. SQL Syntax

For example, count () yields the total number of input rows; count (£1) yields the number of input
rows in which £1 is non-null, since count ignores nulls; and count (distinct f£1) yields the number
of distinct non-null values of £1.

Ordinarily, the input rows are fed to the aggregate function in an unspecified order. In many cases this
does not matter; for example, min produces the same result no matter what order it receives the inputs in.
However, some aggregate functions (such as array_agg and string_agg) produce results that depend
on the ordering of the input rows. When using such an aggregate, the optional order._by_clause can
be used to specify the desired ordering. The order._by_clause has the same syntax as for a query-level
ORDER BY clause, as described in Section 7.5, except that its expressions are always just expressions and
cannot be output-column names or numbers. For example:

SELECT array_agg(a ORDER BY b DESC) FROM table;

When dealing with multiple-argument aggregate functions, note that the ORDER BY clause goes after all
the aggregate arguments. For example, write this:

SELECT string_agg(a, ’,’ ORDER BY a) FROM table;
not this:
SELECT string_agg(a ORDER BY a, ’,’) FROM table; —— 1lncorrect

The latter is syntactically valid, but it represents a call of a single-argument aggregate function with two
ORDER BY keys (the second one being rather useless since it’s a constant).

If DISTINCT is specified in addition to an order._by_clause, then all the ORDER BY expressions must
match regular arguments of the aggregate; that is, you cannot sort on an expression that is not included in
the DISTINCT list.

Note: The ability to specify both prsTincT and orRDER BY in an aggregate function is a PostgreSQL
extension.

The predefined aggregate functions are described in Section 9.18. Other aggregate functions can be added
by the user.

An aggregate expression can only appear in the result list or HAVING clause of a SELECT command. It is
forbidden in other clauses, such as WHERE, because those clauses are logically evaluated before the results
of aggregates are formed.

When an aggregate expression appears in a subquery (see Section 4.2.10 and Section 9.20), the aggregate
is normally evaluated over the rows of the subquery. But an exception occurs if the aggregate’s arguments
contain only outer-level variables: the aggregate then belongs to the nearest such outer level, and is eval-
uated over the rows of that query. The aggregate expression as a whole is then an outer reference for the
subquery it appears in, and acts as a constant over any one evaluation of that subquery. The restriction
about appearing only in the result list or HAVING clause applies with respect to the query level that the
aggregate belongs to.

41

Chapter 4. SQL Syntax

4.2.8. Window Function Calls

A window function call represents the application of an aggregate-like function over some portion of
the rows selected by a query. Unlike regular aggregate function calls, this is not tied to grouping of the
selected rows into a single output row — each row remains separate in the query output. However the
window function is able to scan all the rows that would be part of the current row’s group according to
the grouping specification (PARTITION BY list) of the window function call. The syntax of a window
function call is one of the following:

function_name (|[expression [, expression ...]]) OVER (window_definition)

function_name [expression [, expression ...]]) OVER window_name
*) OVER (window_definition)

*) OVER window_name

function_name

(
(
(
function_name (

where window_definition has the syntax

existing_window_name |
PARTITION BY expression [, ...]]
ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST | LAST } 1 [,

frame_clause]

and the optional frame clause can be one of

[RANGE | ROWS] frame_ start
[RANGE | ROWS] BETWEEN frame_start AND frame_end

where frame_start and frame_end can be one of

UNBOUNDED PRECEDING
value PRECEDING
CURRENT ROW

value FOLLOWING
UNBOUNDED FOLLOWING

Here, expressionrepresents any value expression that does not itself contain window function calls. The
PARTITION BY and ORDER BY lists have essentially the same syntax and semantics as GROUP BY and
ORDER BY clauses of the whole query, except that their expressions are always just expressions and cannot
be output-column names or numbers. window_name is a reference to a named window specification
defined in the query’s WINDOW clause. Named window specifications are usually referenced with just OVER
window_name, but it is also possible to write a window name inside the parentheses and then optionally
supply an ordering clause and/or frame clause (the referenced window must lack these clauses, if they are
supplied here). This latter syntax follows the same rules as modifying an existing window name within
the wINDOW clause; see the SELECT reference page for details.

The frame_clause specifies the set of rows constituting the window frame, for those window functions
that act on the frame instead of the whole partition. If frame end is omitted it defaults to CURRENT
ROW. Restrictions are that frame start cannot be UNBOUNDED FOLLOWING, frame end cannot be
UNBOUNDED PRECEDING, and the frame end choice cannot appear earlier in the above list than the
frame_start choice — for example RANGE BETWEEN CURRENT ROW AND value PRECEDING is not
allowed. The default framing option is RANGE UNBOUNDED PRECEDING, which is the same as RANGE

42

Chapter 4. SQL Syntax

BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW; it sets the frame to be all rows from the parti-
tion start up through the current row’s last peer in the ORDER BY ordering (which means all rows if there
is no ORDER BY). In general, UNBOUNDED PRECEDING means that the frame starts with the first row of
the partition, and similarly UNBOUNDED FOLLOWING means that the frame ends with the last row of the
partition (regardless of RANGE or ROWS mode). In ROWS mode, CURRENT ROW means that the frame starts
or ends with the current row; but in RANGE mode it means that the frame starts or ends with the current
row’s first or last peer in the ORDER BY ordering. The value PRECEDING and value FOLLOWING cases
are currently only allowed in ROWS mode. They indicate that the frame starts or ends with the row that
many rows before or after the current row. value must be an integer expression not containing any vari-
ables, aggregate functions, or window functions. The value must not be null or negative; but it can be zero,
which selects the current row itself.

The built-in window functions are described in Table 9-44. Other window functions can be added by the
user. Also, any built-in or user-defined aggregate function can be used as a window function.

The syntaxes using = are used for calling parameter-less aggregate functions as window functions,
for example count (x) OVER (PARTITION BY x ORDER BY y). = is customarily not used for
non-aggregate window functions. Aggregate window functions, unlike normal aggregate functions, do
not allow DISTINCT or ORDER BY to be used within the function argument list.

Window function calls are permitted only in the SELECT list and the ORDER BY clause of the query.

More information about window functions can be found in Section 3.5, Section 9.19, Section 7.2.4.

4.2.9. Type Casts

A type cast specifies a conversion from one data type to another. PostgreSQL accepts two equivalent
syntaxes for type casts:

CAST (expression AS type)

expression: :type

The casT syntax conforms to SQL; the syntax with : : is historical PostgreSQL usage.

When a cast is applied to a value expression of a known type, it represents a run-time type conversion. The
cast will succeed only if a suitable type conversion operation has been defined. Notice that this is subtly
different from the use of casts with constants, as shown in Section 4.1.2.7. A cast applied to an unadorned
string literal represents the initial assignment of a type to a literal constant value, and so it will succeed
for any type (if the contents of the string literal are acceptable input syntax for the data type).

An explicit type cast can usually be omitted if there is no ambiguity as to the type that a value expression
must produce (for example, when it is assigned to a table column); the system will automatically apply
a type cast in such cases. However, automatic casting is only done for casts that are marked “OK to
apply implicitly” in the system catalogs. Other casts must be invoked with explicit casting syntax. This
restriction is intended to prevent surprising conversions from being applied silently.

It is also possible to specify a type cast using a function-like syntax:
typename (expression)

However, this only works for types whose names are also valid as function names. For example, double
precision cannot be used this way, but the equivalent £1oat8 can. Also, the names interval, time,

43

Chapter 4. SQL Syntax

and t imestamp can only be used in this fashion if they are double-quoted, because of syntactic conflicts.
Therefore, the use of the function-like cast syntax leads to inconsistencies and should probably be avoided.

Note: The function-like syntax is in fact just a function call. When one of the two standard cast syn-
taxes is used to do a run-time conversion, it will internally invoke a registered function to perform the
conversion. By convention, these conversion functions have the same name as their output type, and
thus the “function-like syntax” is nothing more than a direct invocation of the underlying conversion
function. Obviously, this is not something that a portable application should rely on. For further details
see CREATE CAST.

4.2.10. Scalar Subqueries

A scalar subquery is an ordinary SELECT query in parentheses that returns exactly one row with one
column. (See Chapter 7 for information about writing queries.) The SELECT query is executed and the
single returned value is used in the surrounding value expression. It is an error to use a query that returns
more than one row or more than one column as a scalar subquery. (But if, during a particular execution,
the subquery returns no rows, there is no error; the scalar result is taken to be null.) The subquery can
refer to variables from the surrounding query, which will act as constants during any one evaluation of the
subquery. See also Section 9.20 for other expressions involving subqueries.

For example, the following finds the largest city population in each state:

SELECT name, (SELECT max (pop) FROM cities WHERE cities.state = states.name)
FROM states;

4.2.11. Array Constructors

An array constructor is an expression that builds an array value using values for its member elements.
A simple array constructor consists of the key word ARRAY, a left square bracket [, a list of expressions
(separated by commas) for the array element values, and finally a right square bracket 1. For example:

SELECT ARRAY[1,2,3+4];

By default, the array element type is the common type of the member expressions, determined using the
same rules as for UNION or CASE constructs (see Section 10.5). You can override this by explicitly casting
the array constructor to the desired type, for example:

SELECT ARRAY[1,2,22.7]::integer[];

{1,2,23}

44

Chapter 4. SQL Syntax

(1 row)
This has the same effect as casting each expression to the array element type individually. For more on
casting, see Section 4.2.9.

Multidimensional array values can be built by nesting array constructors. In the inner constructors, the
key word ARRAY can be omitted. For example, these produce the same result:

SELECT ARRAY[ARRAY([1,2], ARRAY[3,4]1];

{{1,2},{3,4}}
(1 row)

SELECT ARRAY[[1,2],([3,4]11;

{{1,2},{3,4}}
(1 row)

Since multidimensional arrays must be rectangular, inner constructors at the same level must produce sub-
arrays of identical dimensions. Any cast applied to the outer ARRAY constructor propagates automatically
to all the inner constructors.

Multidimensional array constructor elements can be anything yielding an array of the proper kind, not
only a sub-ARRAY construct. For example:

CREATE TABLE arr(fl int[], £2 int[]);
INSERT INTO arr VALUES (ARRAY[[1,2],([3,411, ARRAY[[5,6],[7,811);

SELECT ARRAY[fl, f2, 7{{9,10},{11,12}}’::int[]] FROM arr;
array

{{{1,2},(3,4}},{{5,6},{7,8}},{{9,10},{11,12}}}
(1 row)

You can construct an empty array, but since it’s impossible to have an array with no type, you must
explicitly cast your empty array to the desired type. For example:

SELECT ARRAY[]::integer([];

It is also possible to construct an array from the results of a subquery. In this form, the array constructor
is written with the key word ARRAY followed by a parenthesized (not bracketed) subquery. For example:

SELECT ARRAY (SELECT oid FROM pg_proc WHERE proname LIKE ’'bytea%’);
?column?

45

Chapter 4. SQL Syntax

{2011,1954,1948,1952,1951,1244,1950,2005,1949,1953,2006,31}
(1 row)

The subquery must return a single column. The resulting one-dimensional array will have an element for
each row in the subquery result, with an element type matching that of the subquery’s output column.

The subscripts of an array value built with ARRAY always begin with one. For more information about
arrays, see Section 8.14.

4.2.12. Row Constructors

A row constructor is an expression that builds a row value (also called a composite value) using values
for its member fields. A row constructor consists of the key word ROw, a left parenthesis, zero or more
expressions (separated by commas) for the row field values, and finally a right parenthesis. For example:

SELECT ROW(1,2.5,"this is a test’);

The key word rROW is optional when there is more than one expression in the list.

A row constructor can include the syntax rowvalue.*, which will be expanded to a list of the elements
of the row value, just as occurs when the . syntax is used at the top level of a SELECT list. For example,
if table t has columns £1 and £2, these are the same:

SELECT ROW(t.x, 42) FROM t;
SELECT ROW(t.fl, t.f2, 42) FROM t;

Note: Before PostgreSQL 8.2, the . » syntax was not expanded, so that writing row (t . =, 42) created
a two-field row whose first field was another row value. The new behavior is usually more useful. If you
need the old behavior of nested row values, write the inner row value without . «, for instance row (t,
42).

By default, the value created by a ROwW expression is of an anonymous record type. If necessary, it can be
cast to a named composite type — either the row type of a table, or a composite type created with CREATE
TYPE AS. An explicit cast might be needed to avoid ambiguity. For example:

CREATE TABLE mytable(fl int, f2 float, £f3 text);

CREATE FUNCTION getfl (mytable) RETURNS int AS ’/SELECT $1.f1’ LANGUAGE SQL;

—— No cast needed since only one getfl() exists
SELECT getfl (ROW(1,2.5,"this is a test’));
getfl

1
(1 row)

CREATE TYPE myrowtype AS (fl1 int, £f2 text, £3 numeric);

46

Chapter 4. SQL Syntax

CREATE FUNCTION getfl (myrowtype) RETURNS int AS /SELECT $1.f1’ LANGUAGE SQL;

—-— Now we need a cast to indicate which function to call:
SELECT getfl (ROW(1,2.5,"this is a test’));
ERROR: function getfl (record) is not unique

SELECT getfl (ROW(1l,2.5,’this is a test’)::mytable);
getfl

getfl

Row constructors can be used to build composite values to be stored in a composite-type table column,
or to be passed to a function that accepts a composite parameter. Also, it is possible to compare two row
values or test a row with IS NULL or IS NOT NULL, for example:

SELECT ROW(1,2.5,’this is a test’) = ROW(1l, 3, ’'not the same’);
SELECT ROW (table.x) IS NULL FROM table; —— detect all-null rows

For more detail see Section 9.21. Row constructors can also be used in connection with subqueries, as
discussed in Section 9.20.

4.2.13. Expression Evaluation Rules

The order of evaluation of subexpressions is not defined. In particular, the inputs of an operator or function
are not necessarily evaluated left-to-right or in any other fixed order.

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then
other subexpressions might not be evaluated at all. For instance, if one wrote:

SELECT true OR somefunc();
then somefunc () would (probably) not be called at all. The same would be the case if one wrote:
SELECT somefunc () OR true;

Note that this is not the same as the left-to-right “short-circuiting” of Boolean operators that is found in
some programming languages.

As a consequence, it is unwise to use functions with side effects as part of complex expressions. It is
particularly dangerous to rely on side effects or evaluation order in WHERE and HAVING clauses, since
those clauses are extensively reprocessed as part of developing an execution plan. Boolean expressions

47

Chapter 4. SQL Syntax

(AND/OR/NOT combinations) in those clauses can be reorganized in any manner allowed by the laws of
Boolean algebra.

When it is essential to force evaluation order, a CASE construct (see Section 9.16) can be used. For exam-
ple, this is an untrustworthy way of trying to avoid division by zero in a WHERE clause:

SELECT ... WHERE x > 0 AND y/x > 1.5;
But this is safe:
SELECT ... WHERE CASE WHEN x > 0 THEN y/x > 1.5 ELSE false END;

A cASE construct used in this fashion will defeat optimization attempts, so it should only be done when
necessary. (In this particular example, it would be better to sidestep the problem by writing y > 1.5xx
instead.)

4.3. Calling Functions

PostgreSQL allows functions that have named parameters to be called using either positional or named
notation. Named notation is especially useful for functions that have a large number of parameters, since it
makes the associations between parameters and actual arguments more explicit and reliable. In positional
notation, a function call is written with its argument values in the same order as they are defined in the
function declaration. In named notation, the arguments are matched to the function parameters by name
and can be written in any order.

In either notation, parameters that have default values given in the function declaration need not be written
in the call at all. But this is particularly useful in named notation, since any combination of parameters
can be omitted; while in positional notation parameters can only be omitted from right to left.

PostgreSQL also supports mixed notation, which combines positional and named notation. In this case,
positional parameters are written first and named parameters appear after them.

The following examples will illustrate the usage of all three notations, using the following function defi-

nition:

CREATE FUNCTION concat_lower_or_upper (a text, b text, uppercase boolean DEFAULT false)
RETURNS text

AS

$$

SELECT CASE
WHEN $3 THEN UPPER(S1 || 7 7 || $2)
ELSE LOWER($1 || 7 " || $2)
END;

$$

LANGUAGE SQL IMMUTABLE STRICT;

Function concat_lower_or_upper has two mandatory parameters, a and b. Additionally there is one
optional parameter uppercase which defaults to false. The a and b inputs will be concatenated, and
forced to either upper or lower case depending on the uppercase parameter. The remaining details of
this function definition are not important here (see Chapter 35 for more information).

48

Chapter 4. SQL Syntax

4.3.1. Using positional notation

Positional notation is the traditional mechanism for passing arguments to functions in PostgreSQL. An
example is:

SELECT concat_lower_or_upper ('Hello’, ’'World’, true);
concat_lower_or_upper

HELLO WORLD
(1 row)

All arguments are specified in order. The result is upper case since uppercase is specified as true.
Another example is:

SELECT concat_lower_or_upper ('Hello’, ’'World’);
concat_lower_or_upper

hello world
(1 row)

Here, the uppercase parameter is omitted, so it receives its default value of false, resulting in lower
case output. In positional notation, arguments can be omitted from right to left so long as they have
defaults.

4.3.2. Using hamed notation

In named notation, each argument’s name is specified using : = to separate it from the argument expres-
sion. For example:

SELECT concat_lower_or_upper(a := 'Hello’, b := 'World’);
concat_lower_or_upper

hello world
(1 row)

Again, the argument uppercase was omitted so it is set to false implicitly. One advantage of using
named notation is that the arguments may be specified in any order, for example:

SELECT concat_lower_or_upper(a := 'Hello’, b := ’'World’, uppercase := true);
concat_lower_or_upper

HELLO WORLD
(1 row)

SELECT concat_lower_or_upper (a "Hello’, uppercase := true, b := 'World’);

concat_lower_or_upper

HELLO WORLD
(1 row)

49

Chapter 4. SQL Syntax

4.3.3. Using mixed notation

The mixed notation combines positional and named notation. However, as already mentioned, named
arguments cannot precede positional arguments. For example:

SELECT concat_lower_or_upper ('Hello’, ’'World’, uppercase := true);
concat_lower_or_upper

HELLO WORLD
(1 row)

In the above query, the arguments a and b are specified positionally, while uppercase is specified by
name. In this example, that adds little except documentation. With a more complex function having nu-
merous parameters that have default values, named or mixed notation can save a great deal of writing and
reduce chances for error.

50

Chapter 5. Data Definition

This chapter covers how one creates the database structures that will hold one’s data. In a relational
database, the raw data is stored in tables, so the majority of this chapter is devoted to explaining how
tables are created and modified and what features are available to control what data is stored in the tables.
Subsequently, we discuss how tables can be organized into schemas, and how privileges can be assigned
to tables. Finally, we will briefly look at other features that affect the data storage, such as inheritance,
views, functions, and triggers.

5.1. Table Basics

A table in a relational database is much like a table on paper: It consists of rows and columns. The number
and order of the columns is fixed, and each column has a name. The number of rows is variable — it
reflects how much data is stored at a given moment. SQL does not make any guarantees about the order
of the rows in a table. When a table is read, the rows will appear in an unspecified order, unless sorting
is explicitly requested. This is covered in Chapter 7. Furthermore, SQL does not assign unique identifiers
to rows, so it is possible to have several completely identical rows in a table. This is a consequence of the
mathematical model that underlies SQL but is usually not desirable. Later in this chapter we will see how
to deal with this issue.

Each column has a data type. The data type constrains the set of possible values that can be assigned to a
column and assigns semantics to the data stored in the column so that it can be used for computations. For
instance, a column declared to be of a numerical type will not accept arbitrary text strings, and the data
stored in such a column can be used for mathematical computations. By contrast, a column declared to be
of a character string type will accept almost any kind of data but it does not lend itself to mathematical
calculations, although other operations such as string concatenation are available.

PostgreSQL includes a sizable set of built-in data types that fit many applications. Users can also define
their own data types. Most built-in data types have obvious names and semantics, so we defer a detailed ex-
planation to Chapter 8. Some of the frequently used data types are integer for whole numbers, numeric
for possibly fractional numbers, text for character strings, date for dates, t ime for time-of-day values,
and timestamp for values containing both date and time.

To create a table, you use the aptly named CREATE TABLE command. In this command you specify at
least a name for the new table, the names of the columns and the data type of each column. For example:

CREATE TABLE my_first_table (
first_column text,
second_column integer

)i

This creates a table named my_first_table with two columns. The first column is named
first_column and has a data type of text; the second column has the name second_column and the
type integer. The table and column names follow the identifier syntax explained in Section 4.1.1.
The type names are usually also identifiers, but there are some exceptions. Note that the column list is
comma-separated and surrounded by parentheses.

Of course, the previous example was heavily contrived. Normally, you would give names to your tables
and columns that convey what kind of data they store. So let’s look at a more realistic example:

51

Chapter 5. Data Definition

CREATE TABLE products (
product_no integer,
name text,
price numeric

)

(The numeric type can store fractional components, as would be typical of monetary amounts.)

Tip: When you create many interrelated tables it is wise to choose a consistent naming pattern for the
tables and columns. For instance, there is a choice of using singular or plural nouns for table names,
both of which are favored by some theorist or other.

There is a limit on how many columns a table can contain. Depending on the column types, it is between
250 and 1600. However, defining a table with anywhere near this many columns is highly unusual and
often a questionable design.

If you no longer need a table, you can remove it using the DROP TABLE command. For example:

DROP TABLE my_first_table;
DROP TABLE products;

Attempting to drop a table that does not exist is an error. Nevertheless, it is common in SQL script files
to unconditionally try to drop each table before creating it, ignoring any error messages, so that the script
works whether or not the table exists. (If you like, you can use the DROP TABLE IF EXISTS variant to
avoid the error messages, but this is not standard SQL.)

If you need to modify a table that already exists, see Section 5.5 later in this chapter.

With the tools discussed so far you can create fully functional tables. The remainder of this chapter is
concerned with adding features to the table definition to ensure data integrity, security, or convenience. If
you are eager to fill your tables with data now you can skip ahead to Chapter 6 and read the rest of this
chapter later.

5.2. Default Values

A column can be assigned a default value. When a new row is created and no values are specified for
some of the columns, those columns will be filled with their respective default values. A data manipulation
command can also request explicitly that a column be set to its default value, without having to know what
that value is. (Details about data manipulation commands are in Chapter 6.)

If no default value is declared explicitly, the default value is the null value. This usually makes sense
because a null value can be considered to represent unknown data.

In a table definition, default values are listed after the column data type. For example:

CREATE TABLE products (
product_no integer,
name text,
price numeric DEFAULT 9.99
)i

52

Chapter 5. Data Definition

The default value can be an expression, which will be evaluated whenever the default value is inserted
(not when the table is created). A common example is for a timestamp column to have a default of
CURRENT_TIMESTAMP, so that it gets set to the time of row insertion. Another common example is gen-
erating a “serial number” for each row. In PostgreSQL this is typically done by something like:

CREATE TABLE products (
product_no integer DEFAULT nextval (' products_product_no_seq’),

)i

where the nextval () function supplies successive values from a sequence object (see Section 9.15). This
arrangement is sufficiently common that there’s a special shorthand for it:

CREATE TABLE products (
product_no SERIAL,

)i

The sERIAL shorthand is discussed further in Section 8.1.4.

5.3. Constraints

Data types are a way to limit the kind of data that can be stored in a table. For many applications, however,
the constraint they provide is too coarse. For example, a column containing a product price should prob-
ably only accept positive values. But there is no standard data type that accepts only positive numbers.
Another issue is that you might want to constrain column data with respect to other columns or rows.
For example, in a table containing product information, there should be only one row for each product
number.

To that end, SQL allows you to define constraints on columns and tables. Constraints give you as much
control over the data in your tables as you wish. If a user attempts to store data in a column that would
violate a constraint, an error is raised. This applies even if the value came from the default value definition.

5.3.1. Check Constraints

A check constraint is the most generic constraint type. It allows you to specify that the value in a certain
column must satisfy a Boolean (truth-value) expression. For instance, to require positive product prices,
you could use:

CREATE TABLE products (

product_no integer,

name text,

price numeric CHECK (price > 0)
)

53

Chapter 5. Data Definition

As you see, the constraint definition comes after the data type, just like default value definitions. Default
values and constraints can be listed in any order. A check constraint consists of the key word CHECK
followed by an expression in parentheses. The check constraint expression should involve the column
thus constrained, otherwise the constraint would not make too much sense.

You can also give the constraint a separate name. This clarifies error messages and allows you to refer to
the constraint when you need to change it. The syntax is:

CREATE TABLE products (

product_no integer,

name text,

price numeric CONSTRAINT positive price CHECK (price > 0)
)i

So, to specify a named constraint, use the key word CONSTRAINT followed by an identifier followed by
the constraint definition. (If you don’t specify a constraint name in this way, the system chooses a name
for you.)

A check constraint can also refer to several columns. Say you store a regular price and a discounted price,
and you want to ensure that the discounted price is lower than the regular price:

CREATE TABLE products (
product_no integer,
name text,
price numeric CHECK (price > 0),
discounted_price numeric CHECK (discounted_price > 0),
CHECK (price > discounted_price)

The first two constraints should look familiar. The third one uses a new syntax. It is not attached to a
particular column, instead it appears as a separate item in the comma-separated column list. Column
definitions and these constraint definitions can be listed in mixed order.

We say that the first two constraints are column constraints, whereas the third one is a table constraint
because it is written separately from any one column definition. Column constraints can also be written
as table constraints, while the reverse is not necessarily possible, since a column constraint is supposed to
refer to only the column it is attached to. (PostgreSQL doesn’t enforce that rule, but you should follow it
if you want your table definitions to work with other database systems.) The above example could also be
written as:

CREATE TABLE products (
product_no integer,
name text,
price numeric,
CHECK (price > 0),
discounted_price numeric,
CHECK (discounted_price > 0),
CHECK (price > discounted_price)
)

or even:

54

Chapter 5. Data Definition

CREATE TABLE products (

product_no integer,

name text,

price numeric CHECK (price > 0),

discounted_price numeric,

CHECK (discounted_price > 0 AND price > discounted_price)
)i

It’s a matter of taste.

Names can be assigned to table constraints in the same way as column constraints:

CREATE TABLE products (
product_no integer,
name text,
price numeric,
CHECK (price > 0),
discounted_price numeric,
CHECK (discounted_price > 0),
CONSTRAINT valid_discount CHECK (price > discounted_price)

It should be noted that a check constraint is satisfied if the check expression evaluates to true or the null
value. Since most expressions will evaluate to the null value if any operand is null, they will not prevent
null values in the constrained columns. To ensure that a column does not contain null values, the not-null
constraint described in the next section can be used.

5.3.2. Not-Null Constraints

A not-null constraint simply specifies that a column must not assume the null value. A syntax example:

CREATE TABLE products (
product_no integer NOT NULL,
name text NOT NULL,
price numeric

)i

A not-null constraint is always written as a column constraint. A not-null constraint is functionally equiv-
alent to creating a check constraint CHECK (column_name IS NOT NULL), but in PostgreSQL creating
an explicit not-null constraint is more efficient. The drawback is that you cannot give explicit names to
not-null constraints created this way.

Of course, a column can have more than one constraint. Just write the constraints one after another:

CREATE TABLE products (

product_no integer NOT NULL,

name text NOT NULL,

price numeric NOT NULL CHECK (price > 0)
)i

55

Chapter 5. Data Definition

The order doesn’t matter. It does not necessarily determine in which order the constraints are checked.

The NOT NULL constraint has an inverse: the NULL constraint. This does not mean that the column must
be null, which would surely be useless. Instead, this simply selects the default behavior that the column
might be null. The NULL constraint is not present in the SQL standard and should not be used in portable
applications. (It was only added to PostgreSQL to be compatible with some other database systems.) Some
users, however, like it because it makes it easy to toggle the constraint in a script file. For example, you
could start with:

CREATE TABLE products (
product_no integer NULL,
name text NULL,
price numeric NULL

)

and then insert the NOT key word where desired.

Tip: In most database designs the majority of columns should be marked not null.

5.3.3. Unique Constraints

Unique constraints ensure that the data contained in a column or a group of columns is unique with respect
to all the rows in the table. The syntax is:

CREATE TABLE products (
product_no integer UNIQUE,
name text,
price numeric

)
when written as a column constraint, and:

CREATE TABLE products (
product_no integer,
name text,
price numeric,
UNIQUE (product_no)

)i

when written as a table constraint.

If a unique constraint refers to a group of columns, the columns are listed separated by commas:

CREATE TABLE example (
a integer,
b integer,
c integer,
UNIQUE (a, c)
)i

56

Chapter 5. Data Definition

This specifies that the combination of values in the indicated columns is unique across the whole table,
though any one of the columns need not be (and ordinarily isn’t) unique.

You can assign your own name for a unique constraint, in the usual way:

CREATE TABLE products (
product_no integer CONSTRAINT must_be_different UNIQUE,
name text,
price numeric

)

Adding a unique constraint will automatically create a unique btree index on the column or group of
columns used in the constraint.

In general, a unique constraint is violated when there is more than one row in the table where the values of
all of the columns included in the constraint are equal. However, two null values are not considered equal
in this comparison. That means even in the presence of a unique constraint it is possible to store duplicate
rows that contain a null value in at least one of the constrained columns. This behavior conforms to the
SQL standard, but we have heard that other SQL databases might not follow this rule. So be careful when
developing applications that are intended to be portable.

5.3.4. Primary Keys

Technically, a primary key constraint is simply a combination of a unique constraint and a not-null con-
straint. So, the following two table definitions accept the same data:

CREATE TABLE products (
product_no integer UNIQUE NOT NULL,
name text,
price numeric

)

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)

Primary keys can also constrain more than one column; the syntax is similar to unique constraints:

CREATE TABLE example (
a integer,
b integer,
c integer,
PRIMARY KEY (a, c)
)i

57

Chapter 5. Data Definition

A primary key indicates that a column or group of columns can be used as a unique identifier for rows in
the table. (This is a direct consequence of the definition of a primary key. Note that a unique constraint
does not, by itself, provide a unique identifier because it does not exclude null values.) This is useful
both for documentation purposes and for client applications. For example, a GUI application that allows
modifying row values probably needs to know the primary key of a table to be able to identify rows
uniquely.

Adding a primary key will automatically create a unique btree index on the column or group of columns
used in the primary key.

A table can have at most one primary key. (There can be any number of unique and not-null constraints,
which are functionally the same thing, but only one can be identified as the primary key.) Relational
database theory dictates that every table must have a primary key. This rule is not enforced by PostgreSQL,
but it is usually best to follow it.

5.3.5. Foreign Keys

A foreign key constraint specifies that the values in a column (or a group of columns) must match the
values appearing in some row of another table. We say this maintains the referential integrity between two
related tables.

Say you have the product table that we have used several times already:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)

Let’s also assume you have a table storing orders of those products. We want to ensure that the orders table
only contains orders of products that actually exist. So we define a foreign key constraint in the orders
table that references the products table:

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products (product_no),
quantity integer

)i

Now it is impossible to create orders with product_no entries that do not appear in the products table.

We say that in this situation the orders table is the referencing table and the products table is the referenced
table. Similarly, there are referencing and referenced columns.

You can also shorten the above command to:

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products,
quantity integer

)

58

Chapter 5. Data Definition

because in absence of a column list the primary key of the referenced table is used as the referenced
column(s).

A foreign key can also constrain and reference a group of columns. As usual, it then needs to be written
in table constraint form. Here is a contrived syntax example:

CREATE TABLE tl (

a integer PRIMARY KEY,

b integer,

c integer,

FOREIGN KEY (b, c) REFERENCES other_table (cl, c2)
)i

Of course, the number and type of the constrained columns need to match the number and type of the
referenced columns.

You can assign your own name for a foreign key constraint, in the usual way.

A table can contain more than one foreign key constraint. This is used to implement many-to-many rela-
tionships between tables. Say you have tables about products and orders, but now you want to allow one
order to contain possibly many products (which the structure above did not allow). You could use this
table structure:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)

CREATE TABLE orders (
order_id integer PRIMARY KEY,
shipping_address text,

)

CREATE TABLE order_items (
product_no integer REFERENCES products,
order_id integer REFERENCES orders,
quantity integer,
PRIMARY KEY (product_no, order_id)

)i

Notice that the primary key overlaps with the foreign keys in the last table.

We know that the foreign keys disallow creation of orders that do not relate to any products. But what if
a product is removed after an order is created that references it? SQL allows you to handle that as well.
Intuitively, we have a few options:

+ Disallow deleting a referenced product
« Delete the orders as well
+ Something else?

59

Chapter 5. Data Definition

To illustrate this, let’s implement the following policy on the many-to-many relationship example above:
when someone wants to remove a product that is still referenced by an order (via order_items), we
disallow it. If someone removes an order, the order items are removed as well:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)

CREATE TABLE orders (
order_id integer PRIMARY KEY,
shipping_address text,

)

CREATE TABLE order_items (
product_no integer REFERENCES products ON DELETE RESTRICT,
order_id integer REFERENCES orders ON DELETE CASCADE,
quantity integer,
PRIMARY KEY (product_no, order_id)

Restricting and cascading deletes are the two most common options. RESTRICT prevents deletion of a
referenced row. NO ACTION means that if any referencing rows still exist when the constraint is checked,
an error is raised; this is the default behavior if you do not specify anything. (The essential difference
between these two choices is that NO ACTION allows the check to be deferred until later in the transaction,
whereas RESTRICT does not.) CASCADE specifies that when a referenced row is deleted, row(s) referencing
it should be automatically deleted as well. There are two other options: SET NULL and SET DEFAULT.
These cause the referencing columns to be set to nulls or default values, respectively, when the referenced
row is deleted. Note that these do not excuse you from observing any constraints. For example, if an action
specifies SET DEFAULT but the default value would not satisfy the foreign key, the operation will fail.

Analogous to ON DELETE there is also ON UPDATE which is invoked when a referenced column is
changed (updated). The possible actions are the same.

Since a DELETE of a row from the referenced table or an UPDATE of a referenced column will require
a scan of the referencing table for rows matching the old value, it is often a good idea to index the
referencing columns. Because this is not always needed, and there are many choices available on how to
index, declaration of a foreign key constraint does not automatically create an index on the referencing
columns.

More information about updating and deleting data is in Chapter 6.

Finally, we should mention that a foreign key must reference columns that either are a primary key or
form a unique constraint. If the foreign key references a unique constraint, there are some additional
possibilities regarding how null values are matched. These are explained in the reference documentation
for CREATE TABLE.

60

Chapter 5. Data Definition

5.3.6. Exclusion Constraints

Exclusion constraints ensure that if any two rows are compared on the specified columns or expressions
using the specified operators, at least one of these operator comparisons will return false or null. The
syntax is:

CREATE TABLE circles (

c circle,

EXCLUDE USING gist (c WITH &&)
)i

See also CREATE TABLE ... CONSTRAINT ... EXCLUDE for details.

Adding an exclusion constraint will automatically create an index of the type specified in the constraint
declaration.

5.4. System Columns

Every table has several system columns that are implicitly defined by the system. Therefore, these names
cannot be used as names of user-defined columns. (Note that these restrictions are separate from whether
the name is a key word or not; quoting a name will not allow you to escape these restrictions.) You do not
really need to be concerned about these columns; just know they exist.

oid
The object identifier (object ID) of a row. This column is only present if the table was created using

WITH OIDs, or if the default_with_oids configuration variable was set at the time. This column is of
type oid (same name as the column); see Section 8.16 for more information about the type.

tableoid

The OID of the table containing this row. This column is particularly handy for queries that select
from inheritance hierarchies (see Section 5.8), since without it, it’s difficult to tell which individual
table a row came from. The tableoid can be joined against the oid column of pg_class to obtain
the table name.

xmin

The identity (transaction ID) of the inserting transaction for this row version. (A row version is an
individual state of a row; each update of a row creates a new row version for the same logical row.)

cmin
The command identifier (starting at zero) within the inserting transaction.
Xmax

The identity (transaction ID) of the deleting transaction, or zero for an undeleted row version. It
is possible for this column to be nonzero in a visible row version. That usually indicates that the
deleting transaction hasn’t committed yet, or that an attempted deletion was rolled back.

61

Chapter 5. Data Definition

cmax
The command identifier within the deleting transaction, or zero.
ctid

The physical location of the row version within its table. Note that although the ctid can be used to
locate the row version very quickly, a row’s ctid will change if it is updated or moved by VACUUM
FULL. Therefore ctid is useless as a long-term row identifier. The OID, or even better a user-defined
serial number, should be used to identify logical rows.

OIDs are 32-bit quantities and are assigned from a single cluster-wide counter. In a large or long-lived
database, it is possible for the counter to wrap around. Hence, it is bad practice to assume that OIDs are
unique, unless you take steps to ensure that this is the case. If you need to identify the rows in a table,
using a sequence generator is strongly recommended. However, OIDs can be used as well, provided that
a few additional precautions are taken:

« A unique constraint should be created on the OID column of each table for which the OID will be
used to identify rows. When such a unique constraint (or unique index) exists, the system takes care
not to generate an OID matching an already-existing row. (Of course, this is only possible if the table
contains fewer than 2*? (4 billion) rows, and in practice the table size had better be much less than that,
or performance might suffer.)

+ OIDs should never be assumed to be unique across tables; use the combination of tableoid and row
OID if you need a database-wide identifier.

« Of course, the tables in question must be created WITH 0IDS. As of PostgreSQL 8.1, WITHOUT OIDS
is the default.

Transaction identifiers are also 32-bit quantities. In a long-lived database it is possible for transaction IDs
to wrap around. This is not a fatal problem given appropriate maintenance procedures; see Chapter 23 for
details. It is unwise, however, to depend on the uniqueness of transaction IDs over the long term (more
than one billion transactions).

Command identifiers are also 32-bit quantities. This creates a hard limit of 2** (4 billion) SQL commands
within a single transaction. In practice this limit is not a problem — note that the limit is on the number
of SQL commands, not the number of rows processed. Also, as of PostgreSQL 8.3, only commands that
actually modify the database contents will consume a command identifier.

5.5. Modifying Tables

When you create a table and you realize that you made a mistake, or the requirements of the application
change, you can drop the table and create it again. But this is not a convenient option if the table is
already filled with data, or if the table is referenced by other database objects (for instance a foreign
key constraint). Therefore PostgreSQL provides a family of commands to make modifications to existing
tables. Note that this is conceptually distinct from altering the data contained in the table: here we are
interested in altering the definition, or structure, of the table.

You can:

62

Chapter 5. Data Definition

« Add columns

« Remove columns

« Add constraints

« Remove constraints

« Change default values

+ Change column data types
+ Rename columns

« Rename tables

All these actions are performed using the ALTER TABLE command, whose reference page contains
details beyond those given here.

5.5.1. Adding a Column

To add a column, use a command like:
ALTER TABLE products ADD COLUMN description text;

The new column is initially filled with whatever default value is given (null if you don’t specify a DEFAULT
clause).

You can also define constraints on the column at the same time, using the usual syntax:
ALTER TABLE products ADD COLUMN description text CHECK (description <> ");

In fact all the options that can be applied to a column description in CREATE TABLE can be used here.
Keep in mind however that the default value must satisfy the given constraints, or the ADD will fail.
Alternatively, you can add constraints later (see below) after you’ve filled in the new column correctly.

Tip: Adding a column with a default requires updating each row of the table (to store the new column
value). However, if no default is specified, PostgreSQL is able to avoid the physical update. So if you
intend to fill the column with mostly nondefault values, it's best to add the column with no default,
insert the correct values using uppATE, and then add any desired default as described below.

5.5.2. Removing a Column

To remove a column, use a command like:

ALTER TABLE products DROP COLUMN description;

Whatever data was in the column disappears. Table constraints involving the column are dropped, too.
However, if the column is referenced by a foreign key constraint of another table, PostgreSQL will not
silently drop that constraint. You can authorize dropping everything that depends on the column by adding
CASCADE;:

ALTER TABLE products DROP COLUMN description CASCADE;

See Section 5.11 for a description of the general mechanism behind this.

63

Chapter 5. Data Definition

5.5.3. Adding a Constraint

To add a constraint, the table constraint syntax is used. For example:

ALTER TABLE products ADD CHECK (name <> ");
ALTER TABLE products ADD CONSTRAINT some_name UNIQUE (product_no);
ALTER TABLE products ADD FOREIGN KEY (product_group_id) REFERENCES product_groups;

To add a not-null constraint, which cannot be written as a table constraint, use this syntax:

ALTER TABLE products ALTER COLUMN product_no SET NOT NULL;

The constraint will be checked immediately, so the table data must satisfy the constraint before it can be
added.

5.5.4. Removing a Constraint

To remove a constraint you need to know its name. If you gave it a name then that’s easy. Otherwise the
system assigned a generated name, which you need to find out. The psql command \d tablename can be
helpful here; other interfaces might also provide a way to inspect table details. Then the command is:

ALTER TABLE products DROP CONSTRAINT some_name;

(If you are dealing with a generated constraint name like $2, don’t forget that you’ll need to double-quote
it to make it a valid identifier.)

As with dropping a column, you need to add cASCADE if you want to drop a constraint that something else
depends on. An example is that a foreign key constraint depends on a unique or primary key constraint on
the referenced column(s).

This works the same for all constraint types except not-null constraints. To drop a not null constraint use:
ALTER TABLE products ALTER COLUMN product_no DROP NOT NULL;

(Recall that not-null constraints do not have names.)

5.5.5. Changing a Column’s Default Value
To set a new default for a column, use a command like:

ALTER TABLE products ALTER COLUMN price SET DEFAULT 7.77;

Note that this doesn’t affect any existing rows in the table, it just changes the default for future INSERT
commands.

To remove any default value, use:

ALTER TABLE products ALTER COLUMN price DROP DEFAULT;

64

Chapter 5. Data Definition

This is effectively the same as setting the default to null. As a consequence, it is not an error to drop a
default where one hadn’t been defined, because the default is implicitly the null value.

5.5.6. Changing a Column’s Data Type
To convert a column to a different data type, use a command like:

ALTER TABLE products ALTER COLUMN price TYPE numeric(10,2);

This will succeed only if each existing entry in the column can be converted to the new type by an implicit
cast. If a more complex conversion is needed, you can add a USING clause that specifies how to compute
the new values from the old.

PostgreSQL will attempt to convert the column’s default value (if any) to the new type, as well as any
constraints that involve the column. But these conversions might fail, or might produce surprising results.
It’s often best to drop any constraints on the column before altering its type, and then add back suitably
modified constraints afterwards.

5.5.7. Renaming a Column

To rename a column:

ALTER TABLE products RENAME COLUMN product_no TO product_number;

5.5.8. Renaming a Table

To rename a table:

ALTER TABLE products RENAME TO items;

5.6. Privileges

When you create a database object, you become its owner. By default, only the owner of an object can
do anything with the object. In order to allow other users to use it, privileges must be granted. (However,
users that have the superuser attribute can always access any object.)

There are several different privileges: SELECT, INSERT, UPDATE, DELETE, TRUNCATE, REFERENCES,
TRIGGER, CREATE, CONNECT, TEMPORARY, EXECUTE, and USAGE. The privileges applicable to a particular
object vary depending on the object’s type (table, function, etc). For complete information on the different
types of privileges supported by PostgreSQL, refer to the GRANT reference page. The following sections
and chapters will also show you how those privileges are used.

65

Chapter 5. Data Definition

The right to modify or destroy an object is always the privilege of the owner only.

Note: To change the owner of a table, index, sequence, or view, use the ALTER TABLE command.
There are corresponding ALTER commands for other object types.

To assign privileges, the GRANT command is used. For example, if joe is an existing user, and accounts
is an existing table, the privilege to update the table can be granted with:

GRANT UPDATE ON accounts TO joe;

Writing ALL in place of a specific privilege grants all privileges that are relevant for the object type.

The special “user” name PUBLIC can be used to grant a privilege to every user on the system. Also,
“group” roles can be set up to help manage privileges when there are many users of a database — for
details see Chapter 20.

To revoke a privilege, use the fittingly named REVOKE command:

REVOKE ALL ON accounts FROM PUBLIC;

The special privileges of the object owner (i.e., the right to do DROP, GRANT, REVOKE, etc.) are always
implicit in being the owner, and cannot be granted or revoked. But the object owner can choose to revoke
his own ordinary privileges, for example to make a table read-only for himself as well as others.

Ordinarily, only the object’s owner (or a superuser) can grant or revoke privileges on an object. However,
it is possible to grant a privilege “with grant option”, which gives the recipient the right to grant it in
turn to others. If the grant option is subsequently revoked then all who received the privilege from that
recipient (directly or through a chain of grants) will lose the privilege. For details see the GRANT and
REVOKE reference pages.

5.7. Schemas

A PostgreSQL database cluster contains one or more named databases. Users and groups of users are
shared across the entire cluster, but no other data is shared across databases. Any given client connection
to the server can access only the data in a single database, the one specified in the connection request.

Note: Users of a cluster do not necessarily have the privilege to access every database in the cluster.
Sharing of user names means that there cannot be different users named, say, joe in two databases in
the same cluster; but the system can be configured to allow joe access to only some of the databases.

A database contains one or more named schemas, which in turn contain tables. Schemas also contain
other kinds of named objects, including data types, functions, and operators. The same object name can
be used in different schemas without conflict; for example, both schemal and myschema can contain
tables named mytable. Unlike databases, schemas are not rigidly separated: a user can access objects in
any of the schemas in the database he is connected to, if he has privileges to do so.

There are several reasons why one might want to use schemas:

66

Chapter 5. Data Definition

« To allow many users to use one database without interfering with each other.
- To organize database objects into logical groups to make them more manageable.

« Third-party applications can be put into separate schemas so they do not collide with the names of other
objects.

Schemas are analogous to directories at the operating system level, except that schemas cannot be nested.

5.7.1. Creating a Schema

To create a schema, use the CREATE SCHEMA command. Give the schema a name of your choice. For
example:

CREATE SCHEMA myschema;

To create or access objects in a schema, write a qualified name consisting of the schema name and table
name separated by a dot:

schema.table

This works anywhere a table name is expected, including the table modification commands and the data
access commands discussed in the following chapters. (For brevity we will speak of tables only, but the
same ideas apply to other kinds of named objects, such as types and functions.)

Actually, the even more general syntax

database.schema.table

can be used too, but at present this is just for pro forma compliance with the SQL standard. If you write a
database name, it must be the same as the database you are connected to.

So to create a table in the new schema, use:

CREATE TABLE myschema.mytable (

)

To drop a schema if it’s empty (all objects in it have been dropped), use:
DROP SCHEMA myschema;
To drop a schema including all contained objects, use:

DROP SCHEMA myschema CASCADE;

See Section 5.11 for a description of the general mechanism behind this.

Often you will want to create a schema owned by someone else (since this is one of the ways to restrict
the activities of your users to well-defined namespaces). The syntax for that is:

CREATE SCHEMA schemaname AUTHORIZATION username;

67

Chapter 5. Data Definition

You can even omit the schema name, in which case the schema name will be the same as the user name.
See Section 5.7.6 for how this can be useful.

Schema names beginning with pg_ are reserved for system purposes and cannot be created by users.

5.7.2. The Public Schema

In the previous sections we created tables without specifying any schema names. By default such tables
(and other objects) are automatically put into a schema named “public”. Every new database contains such
a schema. Thus, the following are equivalent:

CREATE TABLE products (...);
and:

CREATE TABLE public.products (...);

5.7.3. The Schema Search Path

Qualified names are tedious to write, and it’s often best not to wire a particular schema name into applica-
tions anyway. Therefore tables are often referred to by unqualified names, which consist of just the table
name. The system determines which table is meant by following a search path, which is a list of schemas
to look in. The first matching table in the search path is taken to be the one wanted. If there is no match in
the search path, an error is reported, even if matching table names exist in other schemas in the database.

The first schema named in the search path is called the current schema. Aside from being the first schema
searched, it is also the schema in which new tables will be created if the CREATE TABLE command does
not specify a schema name.

To show the current search path, use the following command:
SHOW search_path;
In the default setup this returns:

search_path

"Suser",public

The first element specifies that a schema with the same name as the current user is to be searched. If no
such schema exists, the entry is ignored. The second element refers to the public schema that we have
seen already.

The first schema in the search path that exists is the default location for creating new objects. That is
the reason that by default objects are created in the public schema. When objects are referenced in any
other context without schema qualification (table modification, data modification, or query commands)
the search path is traversed until a matching object is found. Therefore, in the default configuration, any
unqualified access again can only refer to the public schema.

68

Chapter 5. Data Definition

To put our new schema in the path, we use:
SET search_path TO myschema,public;

(We omit the $user here because we have no immediate need for it.) And then we can access the table
without schema qualification:

DROP TABLE mytable;

Also, since myschema is the first element in the path, new objects would by default be created in it.

We could also have written:

SET search_path TO myschema;

Then we no longer have access to the public schema without explicit qualification. There is nothing special
about the public schema except that it exists by default. It can be dropped, too.

See also Section 9.23 for other ways to manipulate the schema search path.

The search path works in the same way for data type names, function names, and operator names as it
does for table names. Data type and function names can be qualified in exactly the same way as table
names. If you need to write a qualified operator name in an expression, there is a special provision: you
must write

OPERATOR (schema.operator)

This is needed to avoid syntactic ambiguity. An example is:

SELECT 3 OPERATOR (pg_catalog.+) 4;

In practice one usually relies on the search path for operators, so as not to have to write anything so ugly
as that.

5.7.4. Schemas and Privileges

By default, users cannot access any objects in schemas they do not own. To allow that, the owner of the
schema must grant the USAGE privilege on the schema. To allow users to make use of the objects in the
schema, additional privileges might need to be granted, as appropriate for the object.

A user can also be allowed to create objects in someone else’s schema. To allow that, the CREATE privilege
on the schema needs to be granted. Note that by default, everyone has CREATE and USAGE privileges on
the schema public. This allows all users that are able to connect to a given database to create objects in
its public schema. If you do not want to allow that, you can revoke that privilege:

REVOKE CREATE ON SCHEMA public FROM PUBLIC;

(The first “public” is the schema, the second “public” means “every user”. In the first sense it is an
identifier, in the second sense it is a key word, hence the different capitalization; recall the guidelines
from Section 4.1.1.)

69

Chapter 5. Data Definition

5.7.5. The System Catalog Schema

In addition to public and user-created schemas, each database contains a pg_catalog schema, which
contains the system tables and all the built-in data types, functions, and operators. pg_catalog is always
effectively part of the search path. If it is not named explicitly in the path then it is implicitly searched
before searching the path’s schemas. This ensures that built-in names will always be findable. However,
you can explicitly place pg_catalog at the end of your search path if you prefer to have user-defined
names override built-in names.

In PostgreSQL versions before 7.3, table names beginning with pg_ were reserved. This is no longer true:
you can create such a table name if you wish, in any non-system schema. However, it’s best to continue to
avoid such names, to ensure that you won’t suffer a conflict if some future version defines a system table
named the same as your table. (With the default search path, an unqualified reference to your table name
would then be resolved as the system table instead.) System tables will continue to follow the convention
of having names beginning with pg_, so that they will not conflict with unqualified user-table names so
long as users avoid the pg_ prefix.

5.7.6. Usage Patterns

Schemas can be used to organize your data in many ways. There are a few usage patterns that are recom-
mended and are easily supported by the default configuration:

« If you do not create any schemas then all users access the public schema implicitly. This simulates the
situation where schemas are not available at all. This setup is mainly recommended when there is only
a single user or a few cooperating users in a database. This setup also allows smooth transition from the
non-schema-aware world.

« You can create a schema for each user with the same name as that user. Recall that the default search
path starts with $Suser, which resolves to the user name. Therefore, if each user has a separate schema,
they access their own schemas by default.

If you use this setup then you might also want to revoke access to the public schema (or drop it alto-
gether), so users are truly constrained to their own schemas.

» To install shared applications (tables to be used by everyone, additional functions provided by third
parties, etc.), put them into separate schemas. Remember to grant appropriate privileges to allow the
other users to access them. Users can then refer to these additional objects by qualifying the names with
a schema name, or they can put the additional schemas into their search path, as they choose.

5.7.7. Portability

In the SQL standard, the notion of objects in the same schema being owned by different users does not
exist. Moreover, some implementations do not allow you to create schemas that have a different name
than their owner. In fact, the concepts of schema and user are nearly equivalent in a database system
that implements only the basic schema support specified in the standard. Therefore, many users consider
qualified names to really consist of username. tablename. This is how PostgreSQL will effectively behave
if you create a per-user schema for every user.

70

Chapter 5. Data Definition

Also, there is no concept of a public schema in the SQL standard. For maximum conformance to the
standard, you should not use (perhaps even remove) the public schema.

Of course, some SQL database systems might not implement schemas at all, or provide namespace sup-
port by allowing (possibly limited) cross-database access. If you need to work with those systems, then
maximum portability would be achieved by not using schemas at all.

5.8. Inheritance

PostgreSQL implements table inheritance, which can be a useful tool for database designers. (SQL:1999
and later define a type inheritance feature, which differs in many respects from the features described
here.)

Let’s start with an example: suppose we are trying to build a data model for cities. Each state has many
cities, but only one capital. We want to be able to quickly retrieve the capital city for any particular state.
This can be done by creating two tables, one for state capitals and one for cities that are not capitals.
However, what happens when we want to ask for data about a city, regardless of whether it is a capital
or not? The inheritance feature can help to resolve this problem. We define the capitals table so that it
inherits from cities:

CREATE TABLE cities (

name text,
population float,
altitude int —-— in feet

)i

CREATE TABLE capitals (
state char (2)
) INHERITS (cities);

In this case, the capitals table inherits all the columns of its parent table, cities. State capitals also
have an extra column, state, that shows their state.

In PostgreSQL, a table can inherit from zero or more other tables, and a query can reference either all
rows of a table or all rows of a table plus all of its descendant tables. The latter behavior is the default.
For example, the following query finds the names of all cities, including state capitals, that are located at
an altitude over 500 feet:

SELECT name, altitude
FROM cities
WHERE altitude > 500;

Given the sample data from the PostgreSQL tutorial (see Section 2.1), this returns:

name | altitude
,,,,,,,,,,, e
Las Vegas | 2174
Mariposa | 1953
Madison | 845

71

Chapter 5. Data Definition

On the other hand, the following query finds all the cities that are not state capitals and are situated at an
altitude over 500 feet:

SELECT name, altitude
FROM ONLY cities
WHERE altitude > 500;

name | altitude
,,,,,,,,,,, [P
Las Vegas | 2174
Mariposa | 1953

Here the onLY keyword indicates that the query should apply only to cities, and not any tables below
cities in the inheritance hierarchy. Many of the commands that we have already discussed — SELECT,
UPDATE and DELETE — support the ONLY keyword.

In some cases you might wish to know which table a particular row originated from. There is a system

column called tableoid in each table which can tell you the originating table:

SELECT c.tableoid, c.name, c.altitude
FROM cities c
WHERE c.altitude > 500;

which returns:

tableoid | name | altitude

__________ oy
139793 | Las Vegas | 2174
139793 | Mariposa | 1953
139798 | Madison | 845

(If you try to reproduce this example, you will probably get different numeric OIDs.) By doing a join with
pg_class you can see the actual table names:

SELECT p.relname, c.name, c.altitude
FROM cities ¢, pg_class p
WHERE c.altitude > 500 AND c.tableoid = p.oid;

which returns:

relname | name | altitude
__________ o
cities | Las Vegas | 2174
cities | Mariposa | 1953
capitals | Madison | 845

Inheritance does not automatically propagate data from INSERT or COPY commands to other tables in the
inheritance hierarchy. In our example, the following INSERT statement will fail:

72

Chapter 5. Data Definition

INSERT INTO cities (name, population, altitude, state)
VALUES (’New York’, NULL, NULL, ’'NY’);

We might hope that the data would somehow be routed to the capitals table, but this does not happen:
INSERT always inserts into exactly the table specified. In some cases it is possible to redirect the insertion
using a rule (see Chapter 37). However that does not help for the above case because the cities table
does not contain the column state, and so the command will be rejected before the rule can be applied.

All check constraints and not-null constraints on a parent table are automatically inherited by its children.
Other types of constraints (unique, primary key, and foreign key constraints) are not inherited.

A table can inherit from more than one parent table, in which case it has the union of the columns defined
by the parent tables. Any columns declared in the child table’s definition are added to these. If the same
column name appears in multiple parent tables, or in both a parent table and the child’s definition, then
these columns are “merged” so that there is only one such column in the child table. To be merged,
columns must have the same data types, else an error is raised. The merged column will have copies of
all the check constraints coming from any one of the column definitions it came from, and will be marked
not-null if any of them are.

Table inheritance is typically established when the child table is created, using the INHERITS clause
of the CREATE TABLE statement. Alternatively, a table which is already defined in a compatible way
can have a new parent relationship added, using the INHERIT variant of ALTER TABLE. To do this
the new child table must already include columns with the same names and types as the columns of the
parent. It must also include check constraints with the same names and check expressions as those of the
parent. Similarly an inheritance link can be removed from a child using the NO INHERIT variant of ALTER
TABLE. Dynamically adding and removing inheritance links like this can be useful when the inheritance
relationship is being used for table partitioning (see Section 5.9).

One convenient way to create a compatible table that will later be made a new child is to use the LIKE
clause in CREATE TABLE. This creates a new table with the same columns as the source table. If there are
any CHECK constraints defined on the source table, the INCLUDING CONSTRAINTS option to LIKE should
be specified, as the new child must have constraints matching the parent to be considered compatible.

A parent table cannot be dropped while any of its children remain. Neither can columns or check con-
straints of child tables be dropped or altered if they are inherited from any parent tables. If you wish to
remove a table and all of its descendants, one easy way is to drop the parent table with the CASCADE
option.

ALTER TABLE will propagate any changes in column data definitions and check constraints down the
inheritance hierarchy. Again, dropping columns that are depended on by other tables is only possible
when using the CASCADE option. ALTER TABLE follows the same rules for duplicate column merging and
rejection that apply during CREATE TABLE.

Note how table access permissions are handled. Querying a parent table can automatically access data in
child tables without further access privilege checking. This preserves the appearance that the data is (also)
in the parent table. Accessing the child tables directly is, however, not automatically allowed and would
require further privileges to be granted.

5.8.1. Caveats

Note that not all SQL commands are able to work on inheritance hierarchies. Commands that are used for
data querying, data modification, or schema modification (e.g., SELECT, UPDATE, DELETE, most variants

73

Chapter 5. Data Definition

of ALTER TABLE, but not INSERT and ALTER TABLE ... RENAME) typically default to including child
tables and support the ONLY notation to exclude them. Commands that do database maintenance and tuning
(e.g., REINDEX, VACUUM) typically only work on individual, physical tables and do no support recursing
over inheritance hierarchies. The respective behavior of each individual command is documented in the
reference part (Reference I, SQL Commands).

A serious limitation of the inheritance feature is that indexes (including unique constraints) and foreign
key constraints only apply to single tables, not to their inheritance children. This is true on both the
referencing and referenced sides of a foreign key constraint. Thus, in the terms of the above example:

« If we declared cities.name to be UNIQUE or a PRIMARY KEY, this would not stop the capitals
table from having rows with names duplicating rows in cities. And those duplicate rows would by
default show up in queries from cities. In fact, by default capitals would have no unique constraint
at all, and so could contain multiple rows with the same name. You could add a unique constraint to
capitals, but this would not prevent duplication compared to cities.

« Similarly, if we were to specify that cities.name REFERENCES some other table, this constraint would
not automatically propagate to capitals. In this case you could work around it by manually adding
the same REFERENCES constraint to capitals.

« Specifying that another table’s column REFERENCES cities (name) would allow the other table to
contain city names, but not capital names. There is no good workaround for this case.

These deficiencies will probably be fixed in some future release, but in the meantime considerable care is
needed in deciding whether inheritance is useful for your application.

Deprecated: In releases of PostgreSQL prior to 7.1, the default behavior was not to include child
tables in queries. This was found to be error prone and also in violation of the SQL standard. You can
get the pre-7.1 behavior by turning off the sql_inheritance configuration option.

5.9. Partitioning

PostgreSQL supports basic table partitioning. This section describes why and how to implement partition-
ing as part of your database design.

5.9.1. Overview

Partitioning refers to splitting what is logically one large table into smaller physical pieces. Partitioning
can provide several benefits:

» Query performance can be improved dramatically in certain situations, particularly when most of the
heavily accessed rows of the table are in a single partition or a small number of partitions. The parti-
tioning substitutes for leading columns of indexes, reducing index size and making it more likely that
the heavily-used parts of the indexes fit in memory.

74

Chapter 5. Data Definition

« When queries or updates access a large percentage of a single partition, performance can be improved
by taking advantage of sequential scan of that partition instead of using an index and random access
reads scattered across the whole table.

« Bulk loads and deletes can be accomplished by adding or removing partitions, if that requirement is
planned into the partitioning design. ALTER TABLE is far faster than a bulk operation. It also entirely
avoids the vACUUM overhead caused by a bulk DELETE.

+ Seldom-used data can be migrated to cheaper and slower storage media.

The benefits will normally be worthwhile only when a table would otherwise be very large. The exact
point at which a table will benefit from partitioning depends on the application, although a rule of thumb
is that the size of the table should exceed the physical memory of the database server.

Currently, PostgreSQL supports partitioning via table inheritance. Each partition must be created as a
child table of a single parent table. The parent table itself is normally empty; it exists just to represent
the entire data set. You should be familiar with inheritance (see Section 5.8) before attempting to set up
partitioning.

The following forms of partitioning can be implemented in PostgreSQL:

Range Partitioning

The table is partitioned into “ranges” defined by a key column or set of columns, with no overlap
between the ranges of values assigned to different partitions. For example one might partition by date
ranges, or by ranges of identifiers for particular business objects.

List Partitioning

The table is partitioned by explicitly listing which key values appear in each partition.

5.9.2. Implementing Partitioning

To set up a partitioned table, do the following:

1. Create the “master” table, from which all of the partitions will inherit.

This table will contain no data. Do not define any check constraints on this table, unless you intend
them to be applied equally to all partitions. There is no point in defining any indexes or unique
constraints on it, either.

2. Create several “child” tables that each inherit from the master table. Normally, these tables will not
add any columns to the set inherited from the master.

We will refer to the child tables as partitions, though they are in every way normal PostgreSQL tables.
3. Add table constraints to the partition tables to define the allowed key values in each partition.

Typical examples would be:

CHECK (x = 1)

CHECK (county IN (’'Oxfordshire’, ’'Buckinghamshire’, ’'Warwickshire’))
CHECK (outletID >= 100 AND outletID < 200)

Ensure that the constraints guarantee that there is no overlap between the key values permitted in
different partitions. A common mistake is to set up range constraints like:

75

Chapter 5. Data Definition

CHECK (outletID BETWEEN 100 AND 200)
CHECK (outletID BETWEEN 200 AND 300)
This is wrong since it is not clear which partition the key value 200 belongs in.

Note that there is no difference in syntax between range and list partitioning; those terms are descrip-
tive only.

4. For each partition, create an index on the key column(s), as well as any other indexes you might want.
(The key index is not strictly necessary, but in most scenarios it is helpful. If you intend the key values
to be unique then you should always create a unique or primary-key constraint for each partition.)

5. Optionally, define a trigger or rule to redirect data inserted into the master table to the appropriate
partition.

6. Ensure that the constraint_exclusion configuration parameter is not disabled in postgresgl.conf.
If it is, queries will not be optimized as desired.

For example, suppose we are constructing a database for a large ice cream company. The company mea-
sures peak temperatures every day as well as ice cream sales in each region. Conceptually, we want a table
like:

CREATE TABLE measurement (

city_id int not null,
logdate date not null,
peaktemp int,
unitsales int

)

We know that most queries will access just the last week’s, month’s or quarter’s data, since the main use
of this table will be to prepare online reports for management. To reduce the amount of old data that needs
to be stored, we decide to only keep the most recent 3 years worth of data. At the beginning of each month
we will remove the oldest month’s data.

In this situation we can use partitioning to help us meet all of our different requirements for the measure-
ments table. Following the steps outlined above, partitioning can be set up as follows:

1. The master table is the measurement table, declared exactly as above.
2. Next we create one partition for each active month:

CREATE TABLE measurement_y2006m02 () INHERITS (measurement);
CREATE TABLE measurement_y2006m03 () INHERITS (measurement);
CREATE TABLE measurement_y2007mll () INHERITS (measurement);
CREATE TABLE measurement_y2007ml2 () INHERITS (measurement);
CREATE TABLE measurement_y2008m0l1 () INHERITS (measurement);

Each of the partitions are complete tables in their own right, but they inherit their definitions from the

measurement table.

This solves one of our problems: deleting old data. Each month, all we will need to do is perform a
DROP TABLE on the oldest child table and create a new child table for the new month’s data.

3. We must provide non-overlapping table constraints. Rather than just creating the partition tables as
above, the table creation script should really be:

CREATE TABLE measurement_y2006m02 (

76

CHECK (

logdate >= DATE ’2006-02-01"

) INHERITS (measurement);

CREATE TABLE
CHECK (

measurement_y2006m03 (

logdate >= DATE ’2006-03-01"

) INHERITS (measurement);

CREATE TABLE
CHECK (

measurement_y2007mll (

logdate >= DATE ’2007-11-01"

) INHERITS (measurement);

CREATE TABLE
CHECK (

measurement_y2007ml2 (

logdate >= DATE ’2007-12-01"

) INHERITS (measurement);

CREATE TABLE

measurement_y2008m01 (

CHECK (logdate >= DATE ’'2008-01-01"
) INHERITS (measurement);

. We probably need indexes on the key columns too:

CREATE INDEX
CREATE INDEX

CREATE INDEX
CREATE INDEX
CREATE INDEX

measurement_y2006m02_logdate
measurement_y2006m03_logdate

measurement_y2007mll_logdate
measurement_y2007ml2_logdate
measurement_y2008m01_logdate

We choose not to add further indexes at this time.

. We want our application to be able to say INSERT INTO measurement

AND

AND

AND

AND

AND

ON
ON

ON
ON
ON

Chapter 5. Data Definition

logdate < DATE ’"2006-03-01")

logdate < DATE ’"2006-04-01")

logdate < DATE ’2007-12-01")

logdate < DATE ’2008-01-01")

logdate < DATE ’2008-02-01")

measurement_y2006m02
measurement_y2006m03

measurement_y2007mll
measurement_y2007ml2
measurement_y2008m01

(logdate) ;
(logdate) ;

(logdate) ;
(logdate) ;
(logdate) ;

. and have the data be

redirected into the appropriate partition table. We can arrange that by attaching a suitable trigger
function to the master table. If data will be added only to the latest partition, we can use a very simple

trigger function:

CREATE OR REPLACE FUNCTION measurement_insert_trigger ()
RETURNS TRIGGER AS $$

BEGIN

INSERT INTO measurement_y2008m0l1 VALUES
RETURN NULL;

END;
$$

LANGUAGE plpgsql;
After creating the function, we create a trigger which calls the trigger function:

CREATE TRIGGER insert_measurement_trigger
BEFORE INSERT ON measurement
FOR EACH ROW EXECUTE PROCEDURE measurement_insert_trigger();
We must redefine the trigger function each month so that it always points to the current partition. The

trigger definition does not need to be updated, however.

(NEW. *) ;

We might want to insert data and have the server automatically locate the partition into which the row
should be added. We could do this with a more complex trigger function, for example:

CREATE OR REPLACE FUNCTION measurement_insert_trigger ()
RETURNS TRIGGER AS $$

BEGIN

IF (NEW.logdate >= DATE ’2006-02-01"'
NEW.logdate < DATE ’2006-03-01"
INSERT INTO measurement_y2006m02 VALUES (NEW.x);

ELSIF (NEW.logdate >= DATE

"2006-03-

AND
) THEN

o1’

AND

77

Chapter 5. Data Definition

NEW.logdate < DATE ’2006-04-01") THEN
INSERT INTO measurement_y2006m03 VALUES (NEW.x);

ELSIF (NEW.logdate >= DATE ’2008-01-01" AND
NEW.logdate < DATE ’'2008-02-01") THEN
INSERT INTO measurement_y2008m01 VALUES (NEW.x);

ELSE
RAISE EXCEPTION ’Date out of range. Fix the measurement_insert_trigger ()
END IF;
RETURN NULL;
END;
$S

LANGUAGE plpgsqgl;
The trigger definition is the same as before. Note that each IF test must exactly match the CHECK
constraint for its partition.

While this function is more complex than the single-month case, it doesn’t need to be updated as
often, since branches can be added in advance of being needed.

Note: In practice it might be best to check the newest partition first, if most inserts go into that
partition. For simplicity we have shown the trigger’s tests in the same order as in other parts of
this example.

As we can see, a complex partitioning scheme could require a substantial amount of DDL. In the above
example we would be creating a new partition each month, so it might be wise to write a script that
generates the required DDL automatically.

5.9.3. Managing Partitions

Normally the set of partitions established when initially defining the table are not intended to remain
static. It is common to want to remove old partitions of data and periodically add new partitions for new
data. One of the most important advantages of partitioning is precisely that it allows this otherwise painful
task to be executed nearly instantaneously by manipulating the partition structure, rather than physically
moving large amounts of data around.

The simplest option for removing old data is simply to drop the partition that is no longer necessary:
DROP TABLE measurement_y2006m02;

This can very quickly delete millions of records because it doesn’t have to individually delete every record.

Another option that is often preferable is to remove the partition from the partitioned table but retain
access to it as a table in its own right:

ALTER TABLE measurement_y2006m02 NO INHERIT measurement;

78

functi

Chapter 5. Data Definition

This allows further operations to be performed on the data before it is dropped. For example, this is often
a useful time to back up the data using copy, pg_dump, or similar tools. It might also be a useful time to
aggregate data into smaller formats, perform other data manipulations, or run reports.

Similarly we can add a new partition to handle new data. We can create an empty partition in the parti-
tioned table just as the original partitions were created above:

CREATE TABLE measurement_y2008m02 (
CHECK (logdate >= DATE ’2008-02-01" AND logdate < DATE ’2008-03-01")
) INHERITS (measurement);

As an alternative, it is sometimes more convenient to create the new table outside the partition structure,
and make it a proper partition later. This allows the data to be loaded, checked, and transformed prior to it
appearing in the partitioned table:

CREATE TABLE measurement_y2008m02
(LIKE measurement INCLUDING DEFAULTS INCLUDING CONSTRAINTS) ;
ALTER TABLE measurement_y2008m02 ADD CONSTRAINT y2008m02
CHECK (logdate >= DATE ’2008-02-01" AND logdate < DATE ’2008-03-01");
\copy measurement_y2008m02 from ’'measurement_y2008m02’
—-— possibly some other data preparation work
ALTER TABLE measurement_y2008m02 INHERIT measurement;

5.9.4. Partitioning and Constraint Exclusion

Constraint exclusion is a query optimization technique that improves performance for partitioned tables
defined in the fashion described above. As an example:

SET constraint_exclusion = on;
SELECT count () FROM measurement WHERE logdate >= DATE ’2008-01-01'";

Without constraint exclusion, the above query would scan each of the partitions of the measurement
table. With constraint exclusion enabled, the planner will examine the constraints of each partition and try
to prove that the partition need not be scanned because it could not contain any rows meeting the query’s
WHERE clause. When the planner can prove this, it excludes the partition from the query plan.

You can wuse the EXPLAIN command to show the difference between a plan with
constraint_exclusion on and a plan with it off. A typical unoptimized plan for this type of table
setup is:

SET constraint_exclusion = off;
EXPLAIN SELECT count (x) FROM measurement WHERE logdate >= DATE ’2008-01-01’;

QUERY PLAN

Aggregate (cost=158.66..158.68 rows=1 width=0)
-> Append (cost=0.00..151.88 rows=2715 width=0)
-> Seqg Scan on measurement (cost=0.00..30.38 rows=543 width=0)
Filter: (logdate >= ’2008-01-01’::date)
—-> Seq Scan on measurement_y2006m02 measurement (cost=0.00..30.38 rows=543 width

79

Chapter 5. Data Definition

Filter: (logdate >= 72008-01-01'::date)
-> Seq Scan on measurement_y2006m03 measurement (cost=0.00..30.38 rows=543 width
Filter: (logdate >= ’2008-01-01’::date)

-> Seqg Scan on measurement_y2007ml2 measurement (cost=0.00..30.38 rows=543 width
Filter: (logdate >= ’72008-01-01’::date)
-> Seq Scan on measurement_y2008m0l measurement (cost=0.00..30.38 rows=543 width

Filter: (logdate >= ’2008-01-01’::date)

Some or all of the partitions might use index scans instead of full-table sequential scans, but the point here
is that there is no need to scan the older partitions at all to answer this query. When we enable constraint
exclusion, we get a significantly cheaper plan that will deliver the same answer:

SET constraint_exclusion = on;
EXPLAIN SELECT count (x) FROM measurement WHERE logdate >= DATE ’2008-01-01’";
QUERY PLAN

Aggregate (cost=63.47..63.48 rows=1 width=0)
-> Append (cost=0.00..60.75 rows=1086 width=0)
-> Seq Scan on measurement (cost=0.00..30.38 rows=543 width=0)
Filter: (logdate >= ’2008-01-01’::date)
-> Seq Scan on measurement_y2008m0l1 measurement (cost=0.00..30.38 rows=543 width
Filter: (logdate >= ’2008-01-01’::date)

Note that constraint exclusion is driven only by CHECK constraints, not by the presence of indexes. There-
fore it isn’t necessary to define indexes on the key columns. Whether an index needs to be created for a
given partition depends on whether you expect that queries that scan the partition will generally scan a
large part of the partition or just a small part. An index will be helpful in the latter case but not the former.

The default (and recommended) setting of constraint_exclusion is actually neither on nor off, but an
intermediate setting called partition, which causes the technique to be applied only to queries that are
likely to be working on partitioned tables. The on setting causes the planner to examine CHECK constraints
in all queries, even simple ones that are unlikely to benefit.

5.9.5. Alternative Partitioning Methods

A different approach to redirecting inserts into the appropriate partition table is to set up rules, instead of
a trigger, on the master table. For example:

CREATE RULE measurement_insert_y2006m02 AS
ON INSERT TO measurement WHERE

(logdate >= DATE ’'2006-02-01’ AND logdate < DATE ’'2006-03-01")
DO INSTEAD

INSERT INTO measurement_y2006m02 VALUES (NEW.x);

CREATE RULE measurement_insert_y2008m0l1 AS
ON INSERT TO measurement WHERE

(logdate >= DATE ’'2008-01-01’ AND logdate < DATE ’'2008-02-01")
DO INSTEAD

INSERT INTO measurement_y2008m0l1 VALUES (NEW.x);

80

Chapter 5. Data Definition

A rule has significantly more overhead than a trigger, but the overhead is paid once per query rather than
once per row, so this method might be advantageous for bulk-insert situations. In most cases, however, the
trigger method will offer better performance.

Be aware that copY ignores rules. If you want to use COPY to insert data, you’ll need to copy into the
correct partition table rather than into the master. COPY does fire triggers, so you can use it normally if
you use the trigger approach.

Another disadvantage of the rule approach is that there is no simple way to force an error if the set of rules
doesn’t cover the insertion date; the data will silently go into the master table instead.

Partitioning can also be arranged using a UNION ALL view, instead of table inheritance. For example,

CREATE VIEW measurement AS
SELECT * FROM measurement_y2006m02
UNION ALL SELECT % FROM measurement_y2006m03

UNION ALL SELECT % FROM measurement_y2007mll
UNION ALL SELECT % FROM measurement_y2007ml2
UNION ALL SELECT % FROM measurement_y2008m01;

However, the need to recreate the view adds an extra step to adding and dropping individual partitions of
the data set. In practice this method has little to recommend it compared to using inheritance.

5.9.6. Caveats

The following caveats apply to partitioned tables:

« There is no automatic way to verify that all of the CHECK constraints are mutually exclusive. It is safer
to create code that generates partitions and creates and/or modifies associated objects than to write each
by hand.

« The schemes shown here assume that the partition key column(s) of a row never change, or at least do
not change enough to require it to move to another partition. An UPDATE that attempts to do that will
fail because of the CHECK constraints. If you need to handle such cases, you can put suitable update
triggers on the partition tables, but it makes management of the structure much more complicated.

 If you are using manual VACUUM or ANALYZE commands, don’t forget that you need to run them on
each partition individually. A command like:

ANALYZE measurement;
will only process the master table.

The following caveats apply to constraint exclusion:

+ Constraint exclusion only works when the query’s WHERE clause contains constants. A parameterized
query will not be optimized, since the planner cannot know which partitions the parameter value might
select at run time. For the same reason, “‘stable” functions such as CURRENT_DATE must be avoided.

« Keep the partitioning constraints simple, else the planner may not be able to prove that partitions
don’t need to be visited. Use simple equality conditions for list partitioning, or simple range tests

81

Chapter 5. Data Definition

for range partitioning, as illustrated in the preceding examples. A good rule of thumb is that parti-
tioning constraints should contain only comparisons of the partitioning column(s) to constants using
B-tree-indexable operators.

« All constraints on all partitions of the master table are examined during constraint exclusion, so large
numbers of partitions are likely to increase query planning time considerably. Partitioning using these
techniques will work well with up to perhaps a hundred partitions; don’t try to use many thousands of
partitions.

5.10. Other Database Objects

Tables are the central objects in a relational database structure, because they hold your data. But they are
not the only objects that exist in a database. Many other kinds of objects can be created to make the use
and management of the data more efficient or convenient. They are not discussed in this chapter, but we
give you a list here so that you are aware of what is possible:

« Views

 Functions and operators

+ Data types and domains

» Triggers and rewrite rules

Detailed information on these topics appears in Part V.

5.11. Dependency Tracking

When you create complex database structures involving many tables with foreign key constraints, views,
triggers, functions, etc. you implicitly create a net of dependencies between the objects. For instance, a
table with a foreign key constraint depends on the table it references.

To ensure the integrity of the entire database structure, PostgreSQL makes sure that you cannot drop
objects that other objects still depend on. For example, attempting to drop the products table we had
considered in Section 5.3.5, with the orders table depending on it, would result in an error message such
as this:

DROP TABLE products;

NOTICE: constraint orders_product_no_fkey on table orders depends on table products
ERROR: cannot drop table products because other objects depend on it
HINT: Use DROP ... CASCADE to drop the dependent objects too.

The error message contains a useful hint: if you do not want to bother deleting all the dependent objects
individually, you can run:

DROP TABLE products CASCADE;

82

Chapter 5. Data Definition

and all the dependent objects will be removed. In this case, it doesn’t remove the orders table, it only
removes the foreign key constraint. (If you want to check what brop ... CASCADE will do, run DROP
without CASCADE and read the NOTICE messages.)

All drop commands in PostgreSQL support specifying CASCADE. Of course, the nature of the possible
dependencies varies with the type of the object. You can also write RESTRICT instead of CASCADE to get
the default behavior, which is to prevent the dropping of objects that other objects depend on.

Note: According to the SQL standard, specifying either RESTRICT or cASCADE is required. No database
system actually enforces that rule, but whether the default behavior is RESTRICT or CASCADE varies
across systems.

Note: Foreign key constraint dependencies and serial column dependencies from PostgreSQL ver-
sions prior to 7.3 are not maintained or created during the upgrade process. All other dependency
types will be properly created during an upgrade from a pre-7.3 database.

83

Chapter 6. Data Manipulation

The previous chapter discussed how to create tables and other structures to hold your data. Now it is time
to fill the tables with data. This chapter covers how to insert, update, and delete table data. The chapter
after this will finally explain how to extract your long-lost data from the database.

6.1. Inserting Data

When a table is created, it contains no data. The first thing to do before a database can be of much use
is to insert data. Data is conceptually inserted one row at a time. Of course you can also insert more than
one row, but there is no way to insert less than one row. Even if you know only some column values, a
complete row must be created.

To create a new row, use the INSERT command. The command requires the table name and column
values. For example, consider the products table from Chapter 5:

CREATE TABLE products (
product_no integer,
name text,
price numeric

)i
An example command to insert a row would be:

INSERT INTO products VALUES (1, ’Cheese’, 9.99);
The data values are listed in the order in which the columns appear in the table, separated by commas.
Usually, the data values will be literals (constants), but scalar expressions are also allowed.

The above syntax has the drawback that you need to know the order of the columns in the table. To avoid
this you can also list the columns explicitly. For example, both of the following commands have the same
effect as the one above:

INSERT INTO products (product_no, name, price) VALUES (1, ’Cheese’, 9.99);
INSERT INTO products (name, price, product_no) VALUES (’'Cheese’, 9.99, 1);

Many users consider it good practice to always list the column names.

If you don’t have values for all the columns, you can omit some of them. In that case, the columns will be
filled with their default values. For example:

INSERT INTO products (product_no, name) VALUES (1, ’Cheese’);
INSERT INTO products VALUES (1, ’Cheese’);

The second form is a PostgreSQL extension. It fills the columns from the left with as many values as are
given, and the rest will be defaulted.

For clarity, you can also request default values explicitly, for individual columns or for the entire row:

INSERT INTO products (product_no, name, price) VALUES (1, ’'Cheese’, DEFAULT);
INSERT INTO products DEFAULT VALUES;

84

Chapter 6. Data Manipulation

You can insert multiple rows in a single command:

INSERT INTO products (product_no, name, price) VALUES
(1, "Cheese’, 9.99),
(2, "Bread’, 1.99),
(3, 'Milk’, 2.99);

Tip: When inserting a lot of data at the same time, considering using the COPY command. It is not
as flexible as the INSERT command, but is more efficient. Refer to Section 14.4 for more information
on improving bulk loading performance.

6.2. Updating Data

The modification of data that is already in the database is referred to as updating. You can update individual
rows, all the rows in a table, or a subset of all rows. Each column can be updated separately; the other
columns are not affected.

To update existing rows, use the UPDATE command. This requires three pieces of information:

1. The name of the table and column to update
2. The new value of the column
3. Which row(s) to update

Recall from Chapter 5 that SQL does not, in general, provide a unique identifier for rows. Therefore it is
not always possible to directly specify which row to update. Instead, you specify which conditions a row
must meet in order to be updated. Only if you have a primary key in the table (independent of whether
you declared it or not) can you reliably address individual rows by choosing a condition that matches the
primary key. Graphical database access tools rely on this fact to allow you to update rows individually.

For example, this command updates all products that have a price of 5 to have a price of 10:

UPDATE products SET price = 10 WHERE price = 5;

This might cause zero, one, or many rows to be updated. It is not an error to attempt an update that does
not match any rows.

Let’s look at that command in detail. First is the key word UPDATE followed by the table name. As usual,
the table name can be schema-qualified, otherwise it is looked up in the path. Next is the key word SET
followed by the column name, an equal sign, and the new column value. The new column value can be
any scalar expression, not just a constant. For example, if you want to raise the price of all products by
10% you could use:

UPDATE products SET price = price 1.10;

85

Chapter 6. Data Manipulation

As you see, the expression for the new value can refer to the existing value(s) in the row. We also left
out the WHERE clause. If it is omitted, it means that all rows in the table are updated. If it is present, only
those rows that match the WHERE condition are updated. Note that the equals sign in the SET clause is an
assignment while the one in the WHERE clause is a comparison, but this does not create any ambiguity. Of
course, the WHERE condition does not have to be an equality test. Many other operators are available (see
Chapter 9). But the expression needs to evaluate to a Boolean result.

You can update more than one column in an UPDATE command by listing more than one assignment in

the SET clause. For example:

UPDATE mytable SET a = 5, b = 3, ¢ = 1 WHERE a > 0;

6.3. Deleting Data

So far we have explained how to add data to tables and how to change data. What remains is to discuss how
to remove data that is no longer needed. Just as adding data is only possible in whole rows, you can only
remove entire rows from a table. In the previous section we explained that SQL does not provide a way
to directly address individual rows. Therefore, removing rows can only be done by specifying conditions
that the rows to be removed have to match. If you have a primary key in the table then you can specify the
exact row. But you can also remove groups of rows matching a condition, or you can remove all rows in
the table at once.

You use the DELETE command to remove rows; the syntax is very similar to the UPDATE command. For
instance, to remove all rows from the products table that have a price of 10, use:

DELETE FROM products WHERE price = 10;

If you simply write:
DELETE FROM products;

then all rows in the table will be deleted! Caveat programmer.

86

Chapter 7. Queries

The previous chapters explained how to create tables, how to fill them with data, and how to manipulate
that data. Now we finally discuss how to retrieve the data from the database.

7.1. Overview

The process of retrieving or the command to retrieve data from a database is called a query. In SQL the
SELECT command is used to specify queries. The general syntax of the SELECT command is

[WITH with_queries] SELECT select_list FROM table_expression [sort_specification]

The following sections describe the details of the select list, the table expression, and the sort specification.
WITH queries are treated last since they are an advanced feature.

A simple kind of query has the form:
SELECT » FROM tablel;

Assuming that there is a table called tablel, this command would retrieve all rows and all columns from
tablel. (The method of retrieval depends on the client application. For example, the psql program will
display an ASCII-art table on the screen, while client libraries will offer functions to extract individual
values from the query result.) The select list specification « means all columns that the table expression
happens to provide. A select list can also select a subset of the available columns or make calculations
using the columns. For example, if tablel has columns named a, b, and c (and perhaps others) you can
make the following query:

SELECT a, b + ¢ FROM tablel;

(assuming that b and c are of a numerical data type). See Section 7.3 for more details.

FROM tablel is a simple kind of table expression: it reads just one table. In general, table expressions
can be complex constructs of base tables, joins, and subqueries. But you can also omit the table expression
entirely and use the SELECT command as a calculator:

SELECT 3 * 4;

This is more useful if the expressions in the select list return varying results. For example, you could call
a function this way:

SELECT random() ;

7.2. Table Expressions

A table expression computes a table. The table expression contains a FROM clause that is optionally fol-
lowed by WHERE, GROUP BY, and HAVING clauses. Trivial table expressions simply refer to a table on

87

Chapter 7. Queries

disk, a so-called base table, but more complex expressions can be used to modify or combine base tables
in various ways.

The optional WHERE, GROUP BY, and HAVING clauses in the table expression specify a pipeline of succes-
sive transformations performed on the table derived in the FROM clause. All these transformations produce
a virtual table that provides the rows that are passed to the select list to compute the output rows of the

query.

7.2.1. The rroM Clause

The FROM Clause derives a table from one or more other tables given in a comma-separated table refer-
ence list.

FROM table_reference [, table reference [, ...]]

A table reference can be a table name (possibly schema-qualified), or a derived table such as a subquery,
a table join, or complex combinations of these. If more than one table reference is listed in the FrROM
clause they are cross-joined (see below) to form the intermediate virtual table that can then be subject to
transformations by the WHERE, GROUP BY, and HAVING clauses and is finally the result of the overall table
expression.

When a table reference names a table that is the parent of a table inheritance hierarchy, the table reference
produces rows of not only that table but all of its descendant tables, unless the key word ONLY precedes
the table name. However, the reference produces only the columns that appear in the named table — any
columns added in subtables are ignored.

7.2.1.1. Joined Tables

A joined table is a table derived from two other (real or derived) tables according to the rules of the
particular join type. Inner, outer, and cross-joins are available.

Join Types
Cross join
T1 CROSS JOIN T2

For every possible combination of rows from 71 and T2 (i.e., a Cartesian product), the joined table
will contain a row consisting of all columns in 71 followed by all columns in 72. If the tables have
N and M rows respectively, the joined table will have N * M rows.

FROM T1 CROSS JOIN T2 is equivalent to FROM 11, T2.Itis also equivalent to FROM T1 INNER
JOIN T2 ON TRUE (see below).

Qualified joins

T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER

Tl NATURAL [INNER] | { LEFT | RIGHT | FULL [OUTER] } JOIN T2

The words INNER and OUTER are optional in all forms. INNER is the default; LEFT, RIGHT, and FULL
imply an outer join.

88

]] } JOIN T2 ON boolean_expression
Tl { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 USING (join column list
{ }

)

Chapter 7. Queries

The join condition is specified in the ON or USING clause, or implicitly by the word NATURAL. The
join condition determines which rows from the two source tables are considered to “match”, as
explained in detail below.

The ON clause is the most general kind of join condition: it takes a Boolean value expression of the
same kind as is used in a WHERE clause. A pair of rows from T1 and 72 match if the ON expression
evaluates to true for them.

USING is a shorthand notation: it takes a comma-separated list of column names, which the joined
tables must have in common, and forms a join condition specifying equality of each of these pairs
of columns. Furthermore, the output of JOIN USING has one column for each of the equated pairs
of input columns, followed by the remaining columns from each table. Thus, USING (a, b, c)
is equivalent to ON (tl.a = t2.a AND tl.b = t2.b AND tl.c = t2.c) with the exception
that if oN is used there will be two columns a, b, and c in the result, whereas with USING there will
be only one of each (and they will appear first if SELECT « is used).

Finally, NATURAL is a shorthand form of USING: it forms a USING list consisting of all column names
that appear in both input tables. As with USING, these columns appear only once in the output table.

The possible types of qualified join are:

INNER JOIN

For each row R1 of T1, the joined table has a row for each row in T2 that satisfies the join
condition with R1.

LEFT OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join condition
with any row in T2, a joined row is added with null values in columns of T2. Thus, the joined
table always has at least one row for each row in T1.

RIGHT OUTER JOIN

First, an inner join is performed. Then, for each row in T2 that does not satisfy the join condition
with any row in T1, a joined row is added with null values in columns of T1. This is the converse
of a left join: the result table will always have a row for each row in T2.

FULL OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join condition
with any row in T2, a joined row is added with null values in columns of T2. Also, for each row
of T2 that does not satisfy the join condition with any row in T1, a joined row with null values
in the columns of T1 is added.

Joins of all types can be chained together or nested: either or both 71 and T2 can be joined tables. Paren-
theses can be used around JOIN clauses to control the join order. In the absence of parentheses, JOIN
clauses nest left-to-right.

To put this together, assume we have tables t1:

89

Chapter 7. Queries

3] ¢
and t£2
num | value
_____ +_______
1] xxx
3 | yyy
5| zzz

then we get the following results for the various joins:

=> SELECT * FROM tl CROSS JOIN t2;

num | name | num | value
77777 e S
11 a | 1 | xxx
11 a \ 3 | yyy
11 a \ 5 | zzz
2 | b | 1 | xxx
2 | b \ 3 1 yyy
2 | b | 5| zzz
3 | ¢ | 1 | xxx
3 | c \ 3 1 yyy
3 1 ¢ \ 5 | zzz
(9 rows)

=> SELECT * FROM tl INNER JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— -t
11 a | 1] xxx
3 1 ¢ \ 3 | yyy
(2 rows)

=> SELECT * FROM tl INNER JOIN t2 USING (num);

num | name | value

_____ e
11 a | xxx
31 c | yyy

(2 rows)

=> SELECT *x FROM tl NATURAL INNER JOIN t2;

num | name | value

_____ e
11 a | xxx
31 c l yyy

(2 rows)

=> SELECT x FROM tl LEFT JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— e
1] a \ 1 | xxx
2 | b \ |
31 ¢ \ 31 yyy

90

Chapter 7. Queries

(3 rows)

=> SELECT x FROM tl LEFT JOIN t2 USING (num);

num | name | value
_____ e

1 a XXX

2 | b \

31 c | yyy
(3 rows)

=> SELECT » FROM tl RIGHT JOIN t2 ON tl.num = t2.num;

num | name | num | value
77777 t————
1] a | 1 | xxx
31 ¢ \ 31 yyy
\ \ 5 | zzz
(3 rows)

=> SELECT x FROM tl FULL JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— o
11 a | 1 | xxx
2 | b \ |
31 ¢ \ 31 yyy
| | 5 | zzz
(4 rows)

The join condition specified with ON can also contain conditions that do not relate directly to the join. This
can prove useful for some queries but needs to be thought out carefully. For example:

=> SELECT * FROM tl LEFT JOIN t2 ON tl.num = t2.num AND t2.value = ’'xxx’;

num | name | num | value
77777 e
11 a | 1 | xxx
2 | b \ |
3| c \ |
(3 rows)

Notice that placing the restriction in the WHERE clause produces a different result:

=> SELECT * FROM tl LEFT JOIN t2 ON tl.num = t2.num WHERE t2.value = ’'xxx’;
num | name | num | value
77777 Fomm
1] a \ 1 | xxx
(1 row)

This is because a restriction placed in the ON clause is processed before the join, while a restriction placed
in the WHERE clause is processed after the join.

91

Chapter 7. Queries

7.2.1.2. Table and Column Aliases

A temporary name can be given to tables and complex table references to be used for references to the
derived table in the rest of the query. This is called a table alias.

To create a table alias, write

FROM table reference AS alias
or

FROM table reference alias

The as key word is optional noise. alias can be any identifier.

A typical application of table aliases is to assign short identifiers to long table names to keep the join
clauses readable. For example:

SELECT * FROM some_very_long_table_name s JOIN another_fairly_ long_name a ON s.id = a.num;

The alias becomes the new name of the table reference so far as the current query is concerned — it is not
allowed to refer to the table by the original name elsewhere in the query. Thus, this is not valid:

SELECT * FROM my_table AS m WHERE my_table.a > 5; —— wrong

Table aliases are mainly for notational convenience, but it is necessary to use them when joining a table
to itself, e.g.:

SELECT * FROM people AS mother JOIN people AS child ON mother.id = child.mother_id;

Additionally, an alias is required if the table reference is a subquery (see Section 7.2.1.3).

Parentheses are used to resolve ambiguities. In the following example, the first statement assigns the alias
b to the second instance of my_table, but the second statement assigns the alias to the result of the join:

SELECT % FROM my_table AS a CROSS JOIN my_table AS b
SELECT x FROM (my_table AS a CROSS JOIN my_table) AS Db

Another form of table aliasing gives temporary names to the columns of the table, as well as the table
itself:

FROM table_reference [AS] alias (columnl [, column2 [, ...]]1)

If fewer column aliases are specified than the actual table has columns, the remaining columns are not
renamed. This syntax is especially useful for self-joins or subqueries.

When an alias is applied to the output of a JOIN clause, the alias hides the original name(s) within the
JOIN. For example:

SELECT a.x FROM my_table AS a JOIN your_table AS b ON

92

Chapter 7. Queries
is valid SQL, but:
SELECT a.x» FROM (my_table AS a JOIN your_table AS b ON ...) AS c

is not valid; the table alias a is not visible outside the alias c.

7.2.1.3. Subqueries

Subqueries specifying a derived table must be enclosed in parentheses and must be assigned a table alias
name. (See Section 7.2.1.2.) For example:

FROM (SELECT * FROM tablel) AS alias_name

This example is equivalent to FROM tablel AS alias_name. More interesting cases, which cannot be
reduced to a plain join, arise when the subquery involves grouping or aggregation.

A subquery can also be a VALUES list:

FROM (VALUES (’anne’, ’‘smith’), (‘bob’, ’jones’), (’joe’, ’'blow’))
AS names (first, last)

Again, a table alias is required. Assigning alias names to the columns of the VALUES list is optional, but
is good practice. For more information see Section 7.7.

7.2.1.4. Table Functions

Table functions are functions that produce a set of rows, made up of either base data types (scalar types)
or composite data types (table rows). They are used like a table, view, or subquery in the FROM clause of
a query. Columns returned by table functions can be included in SELECT, JOIN, or WHERE clauses in the
same manner as a table, view, or subquery column.

If a table function returns a base data type, the single result column name matches the function name. If
the function returns a composite type, the result columns get the same names as the individual attributes
of the type.

A table function can be aliased in the FROM clause, but it also can be left unaliased. If a function is used
in the FROM clause with no alias, the function name is used as the resulting table name.

Some examples:

CREATE TABLE foo (fooid int, foosubid int, fooname text);

CREATE FUNCTION getfoo(int) RETURNS SETOF foo AS $$
SELECT % FROM foo WHERE fooid = $1;

$$ LANGUAGE SQL;

SELECT = FROM getfoo(l) AS t1;

SELECT % FROM foo

WHERE foosubid IN (
SELECT foosubid

93

Chapter 7. Queries

FROM getfoo (foo.fooid) =z
WHERE z.fooid = foo.fooid
)

CREATE VIEW vw_getfoo AS SELECT % FROM getfoo(l);

SELECT x FROM vw_getfoo;

In some cases it is useful to define table functions that can return different column sets depending on how
they are invoked. To support this, the table function can be declared as returning the pseudotype record.
When such a function is used in a query, the expected row structure must be specified in the query itself,
so that the system can know how to parse and plan the query. Consider this example:

SELECT =«
FROM dblink (’ dbname=mydb’, ’'SELECT proname, prosrc FROM pg_proc’)
AS tl (proname name, prosrc text)
WHERE proname LIKE ’'bytea$%’;

The dblink function executes a remote query (see contrib/dblink). It is declared to return record
since it might be used for any kind of query. The actual column set must be specified in the calling query
so that the parser knows, for example, what » should expand to.

7.2.2. The wHERE Clause

The syntax of the WHERE Clause is
WHERE search_condition

where search_condition is any value expression (see Section 4.2) that returns a value of type

boolean.

After the processing of the FROM clause is done, each row of the derived virtual table is checked against
the search condition. If the result of the condition is true, the row is kept in the output table, otherwise
(i.e., if the result is false or null) it is discarded. The search condition typically references at least one
column of the table generated in the FROM clause; this is not required, but otherwise the WHERE clause will
be fairly useless.

Note: The join condition of an inner join can be written either in the waeRE clause or in the Jo1n clause.
For example, these table expressions are equivalent:

FROM a, b WHERE a.id = b.id AND b.val > 5

and:

FROM a INNER JOIN b ON (a.id = b.id) WHERE b.val > 5
or perhaps even:

FROM a NATURAL JOIN b WHERE b.val > 5

94

Chapter 7. Queries

Which one of these you use is mainly a matter of style. The Jo1n syntax in the From clause is probably
not as portable to other SQL database management systems, even though it is in the SQL standard.
For outer joins there is no choice: they must be done in the rFrom clause. The on or usING clause
of an outer join is not equivalent to a waerE condition, because it results in the addition of rows (for
unmatched input rows) as well as the removal of rows in the final result.

Here are some examples of WHERE clauses:

SELECT

SELECT

SELECT

SELECT

SELECT

SELECT

FROM fdt WHERE

FROM

FROM

FROM

FROM

FROM

fdt

fdt

fdt

fdt

fdt

WHERE

WHERE

WHERE

WHERE

WHERE

cl > 5

cl IN (1, 2, 3)

cl IN (SELECT cl FROM t2)

cl IN (SELECT c3 FROM t2 WHERE c2 = fdt.cl + 10)

cl BETWEEN (SELECT c3 FROM t2 WHERE c2 = fdt.cl + 10)

EXISTS (SELECT cl FROM t2 WHERE c2 > fdt.cl)

£dt is the table derived in the FrROM clause. Rows that do not meet the search condition of the WHERE
clause are eliminated from £dt. Notice the use of scalar subqueries as value expressions. Just like any

other query, the subqueries can employ complex table expressions. Notice also how £dt is referenced in

the subqueries. Qualifying c1 as £dt . c1 is only necessary if c1 is also the name of a column in the derived

input table of the subquery. But qualifying the column name adds clarity even when it is not needed. This

example shows how the column naming scope of an outer query extends into its inner queries.

7.2.3. The crourP BY and HAVING Clauses

After passing the WHERE filter, the derived input table might be subject to grouping, using the GROUP BY
clause, and elimination of group rows using the HAVING clause.

SELECT select_list

FROM
[WHERE

-]

GROUP BY grouping_column_reference [, grouping_column_reference]...

The GROUP BY Clause is used to group together those rows in a table that have the same values in all the
columns listed. The order in which the columns are listed does not matter. The effect is to combine each
set of rows having common values into one group row that represents all rows in the group. This is done
to eliminate redundancy in the output and/or compute aggregates that apply to these groups. For instance:

=> SELECT x FROM testl;

95

AND 100

Chapter 7. Queries
(4 rows)

=> SELECT x FROM testl GROUP BY x;

(3 rows)

In the second query, we could not have written SELECT = FROM testl GROUP BY x, because there is
no single value for the column y that could be associated with each group. The grouped-by columns can
be referenced in the select list since they have a single value in each group.

In general, if a table is grouped, columns that are not listed in GROUP BY cannot be referenced except in
aggregate expressions. An example with aggregate expressions is:

=> SELECT x, sum(y) FROM testl GROUP BY x;
sum

Q

(3 rows

Here sum is an aggregate function that computes a single value over the entire group. More information
about the available aggregate functions can be found in Section 9.18.

Tip: Grouping without aggregate expressions effectively calculates the set of distinct values in a col-
umn. This can also be achieved using the p1sTINCT clause (see Section 7.3.3).

Here is another example: it calculates the total sales for each product (rather than the total sales of all
products):

SELECT product_id, p.name, (sum(s.units) * p.price) AS sales
FROM products p LEFT JOIN sales s USING (product_id)
GROUP BY product_id, p.name, p.price;

In this example, the columns product_id, p.name, and p.price must be in the GROUP BY clause
since they are referenced in the query select list. (Depending on how the products table is set up, name
and price might be fully dependent on the product ID, so the additional groupings could theoretically be
unnecessary, though this is not implemented.) The column s .units does not have to be in the GROUP BY
list since it is only used in an aggregate expression (sum (. . .)), which represents the sales of a product.
For each product, the query returns a summary row about all sales of the product.

In strict SQL, GROUP BY can only group by columns of the source table but PostgreSQL extends this to
also allow GROUP BY to group by columns in the select list. Grouping by value expressions instead of
simple column names is also allowed.

96

Chapter 7. Queries

If a table has been grouped using GROUP BY, but only certain groups are of interest, the HAVING clause
can be used, much like a WHERE clause, to eliminate groups from the result. The syntax is:

SELECT select_list FROM ... [WHERE ...] GROUP BY ... HAVING boolean_expression

Expressions in the HAVING clause can refer both to grouped expressions and to ungrouped expressions
(which necessarily involve an aggregate function).

Example:

=> SELECT x, sum(y) FROM testl GROUP BY x HAVING sum(y) > 3;
x | sum

=> SELECT x, sum(y) FROM testl GROUP BY x HAVING x < ’'c’;
x | sum

Again, a more realistic example:

SELECT product_id, p.name, (sum(s.units) =% (p.price - p.cost)) AS profit
FROM products p LEFT JOIN sales s USING (product_id)
WHERE s.date > CURRENT_DATE - INTERVAL ’4 weeks’
GROUP BY product_id, p.name, p.price, p.cost
HAVING sum(p.price * s.units) > 5000;

In the example above, the WHERE clause is selecting rows by a column that is not grouped (the expression
is only true for sales during the last four weeks), while the HAVING clause restricts the output to groups
with total gross sales over 5000. Note that the aggregate expressions do not necessarily need to be the
same in all parts of the query.

If a query contains aggregate function calls, but no GROUP BY clause, grouping still occurs: the result is a
single group row (or perhaps no rows at all, if the single row is then eliminated by HAVING). The same is
true if it contains a HAVING clause, even without any aggregate function calls or GROUP BY clause.

7.2.4. Window Function Processing

If the query contains any window functions (see Section 3.5, Section 9.19 and Section 4.2.8), these func-
tions are evaluated after any grouping, aggregation, and HAVING filtering is performed. That is, if the
query uses any aggregates, GROUP BY, or HAVING, then the rows seen by the window functions are the
group rows instead of the original table rows from FROM/WHERE.

When multiple window functions are used, all the window functions having syntactically equivalent
PARTITION BY and ORDER BY clauses in their window definitions are guaranteed to be evaluated in

97

Chapter 7. Queries

a single pass over the data. Therefore they will see the same sort ordering, even if the ORDER BY does not
uniquely determine an ordering. However, no guarantees are made about the evaluation of functions hav-
ing different PARTITION BY or ORDER BY specifications. (In such cases a sort step is typically required
between the passes of window function evaluations, and the sort is not guaranteed to preserve ordering of
rows that its ORDER BY sees as equivalent.)

Currently, window functions always require presorted data, and so the query output will be ordered ac-
cording to one or another of the window functions’ PARTITION BY/ORDER BY clauses. It is not recom-
mendable to rely on this, however. Use an explicit top-level ORDER BY clause if you want to be sure the
results are sorted in a particular way.

7.3. Select Lists

As shown in the previous section, the table expression in the SELECT command constructs an intermediate
virtual table by possibly combining tables, views, eliminating rows, grouping, etc. This table is finally
passed on to processing by the select list. The select list determines which columns of the intermediate
table are actually output.

7.3.1. Select-List ltems

The simplest kind of select list is » which emits all columns that the table expression produces. Otherwise,
a select list is a comma-separated list of value expressions (as defined in Section 4.2). For instance, it could
be a list of column names:

SELECT a, b, ¢ FROM

The columns names a, b, and c are either the actual names of the columns of tables referenced in the
FROM clause, or the aliases given to them as explained in Section 7.2.1.2. The name space available in the
select list is the same as in the WHERE clause, unless grouping is used, in which case it is the same as in
the HAVING clause.

If more than one table has a column of the same name, the table name must also be given, as in:
SELECT tbll.a, tbl2.a, tbll.b FROM

When working with multiple tables, it can also be useful to ask for all the columns of a particular table:
SELECT tbll.*, tbl2.a FROM

(See also Section 7.2.2.)

If an arbitrary value expression is used in the select list, it conceptually adds a new virtual column to the
returned table. The value expression is evaluated once for each result row, with the row’s values substituted
for any column references. But the expressions in the select list do not have to reference any columns in
the table expression of the FROM clause; they can be constant arithmetic expressions, for instance.

98

Chapter 7. Queries

7.3.2. Column Labels

The entries in the select list can be assigned names for subsequent processing, such as for use in an ORDER
BY clause or for display by the client application. For example:

SELECT a AS value, b + ¢ AS sum FROM ...

If no output column name is specified using As, the system assigns a default column name. For simple
column references, this is the name of the referenced column. For function calls, this is the name of the
function. For complex expressions, the system will generate a generic name.

The as keyword is optional, but only if the new column name does not match any PostgreSQL keyword
(see Appendix C). To avoid an accidental match to a keyword, you can double-quote the column name.
For example, VALUE is a keyword, so this does not work:

SELECT a value, b + ¢ AS sum FROM ...
but this does:

SELECT a "value", b + ¢ AS sum FROM

For protection against possible future keyword additions, it is recommended that you always either write
As or double-quote the output column name.

Note: The naming of output columns here is different from that done in the From clause (see Section
7.2.1.2). It is possible to rename the same column twice, but the name assigned in the select list is
the one that will be passed on.

7.3.3. DISTINCT

After the select list has been processed, the result table can optionally be subject to the elimination of
duplicate rows. The DISTINCT key word is written directly after SELECT to specify this:

SELECT DISTINCT select_list

(Instead of DISTINCT the key word ALL can be used to specify the default behavior of retaining all rows.)

Obviously, two rows are considered distinct if they differ in at least one column value. Null values are
considered equal in this comparison.

Alternatively, an arbitrary expression can determine what rows are to be considered distinct:
SELECT DISTINCT ON (expression [, expression ...]) select_list

Here expression is an arbitrary value expression that is evaluated for all rows. A set of rows for which
all the expressions are equal are considered duplicates, and only the first row of the set is kept in the
output. Note that the “first row” of a set is unpredictable unless the query is sorted on enough columns
to guarantee a unique ordering of the rows arriving at the DISTINCT filter. (DISTINCT ON processing
occurs after ORDER BY sorting.)

99

Chapter 7. Queries

The DISTINCT ON clause is not part of the SQL standard and is sometimes considered bad style because
of the potentially indeterminate nature of its results. With judicious use of GROUP BY and subqueries in
FROM, this construct can be avoided, but it is often the most convenient alternative.

7.4. Combining Queries

The results of two queries can be combined using the set operations union, intersection, and difference.
The syntax is

queryl UNION [ALL] gquery2
queryl INTERSECT [ALL] query?2
queryl EXCEPT [ALL] query?2

queryl and query?2 are queries that can use any of the features discussed up to this point. Set operations
can also be nested and chained, for example

queryl UNION query2 UNION query3
which is executed as:

(queryl UNION query2) UNION query3

UNION effectively appends the result of query?2 to the result of query1 (although there is no guarantee
that this is the order in which the rows are actually returned). Furthermore, it eliminates duplicate rows
from its result, in the same way as DISTINCT, unless UNION ALL is used.

INTERSECT returns all rows that are both in the result of query1 and in the result of query2. Duplicate
rows are eliminated unless INTERSECT ALL is used.

EXCEPT returns all rows that are in the result of query1 but not in the result of query2. (This is sometimes
called the difference between two queries.) Again, duplicates are eliminated unless EXCEPT ALL is used.

In order to calculate the union, intersection, or difference of two queries, the two queries must be “union
compatible”, which means that they return the same number of columns and the corresponding columns
have compatible data types, as described in Section 10.5.

7.5. Sorting Rows

After a query has produced an output table (after the select list has been processed) it can optionally be
sorted. If sorting is not chosen, the rows will be returned in an unspecified order. The actual order in that
case will depend on the scan and join plan types and the order on disk, but it must not be relied on. A
particular output ordering can only be guaranteed if the sort step is explicitly chosen.

The ORDER BY clause specifies the sort order:

SELECT select_list
FROM table expression

100

Chapter 7. Queries

ORDER BY sort_expressionl [ASC | DESC] [NULLS { FIRST | LAST }]
[, sort_expression2 [ASC | DESC] [NULLS { FIRST | LAST }] ...]

The sort expression(s) can be any expression that would be valid in the query’s select list. An example is:
SELECT a, b FROM tablel ORDER BY a + b, c;

When more than one expression is specified, the later values are used to sort rows that are equal according
to the earlier values. Each expression can be followed by an optional ASC or DESC keyword to set the sort
direction to ascending or descending. ASC order is the default. Ascending order puts smaller values first,
where “smaller” is defined in terms of the < operator. Similarly, descending order is determined with the
> operator. '

The NULLS FIRST and NULLS LAST options can be used to determine whether nulls appear before or
after non-null values in the sort ordering. By default, null values sort as if larger than any non-null value;
that is, NULLS FIRST is the default for DESC order, and NULLS LAST otherwise.

Note that the ordering options are considered independently for each sort column. For example ORDER
BY x, y DESC means ORDER BY x ASC, y DESC, which is not the same as ORDER BY x DESC, y
DESC.

A sort_expression can also be the column label or number of an output column, as in:

SELECT a + b AS sum, c FROM tablel ORDER BY sum;
SELECT a, max(b) FROM tablel GROUP BY a ORDER BY 1;

both of which sort by the first output column. Note that an output column name has to stand alone, that is,
it cannot be used in an expression — for example, this is not correct:

SELECT a + b AS sum, c¢ FROM tablel ORDER BY sum + cC; —— wWrong

This restriction is made to reduce ambiguity. There is still ambiguity if an ORDER BY item is a simple
name that could match either an output column name or a column from the table expression. The output
column is used in such cases. This would only cause confusion if you use AS to rename an output column
to match some other table column’s name.

ORDER BY can be applied to the result of a UNION, INTERSECT, or EXCEPT combination, but in this case
it is only permitted to sort by output column names or numbers, not by expressions.

7.6. LIMIT and OFFSET

LIMIT and OFFSET allow you to retrieve just a portion of the rows that are generated by the rest of the
query:

SELECT select_list
FROM table expression
[ORDER BY ...]
[LIMIT { number | ALL }] [OFFSET number]

1.

Actually, PostgreSQL uses the default B-tree operator class for the expression’s data type to determine the sort ordering for

asc and DEsc. Conventionally, data types will be set up so that the < and > operators correspond to this sort ordering, but a
user-defined data type’s designer could choose to do something different.

101

Chapter 7. Queries

If a limit count is given, no more than that many rows will be returned (but possibly less, if the query itself
yields less rows). LIMIT ALL is the same as omitting the LIMIT clause.

OFFSET says to skip that many rows before beginning to return rows. OFFSET 0 is the same as omitting
the OFFSET clause, and LIMIT NULL is the same as omitting the LIMIT clause. If both OFFSET and
LIMIT appear, then OFFSET rows are skipped before starting to count the LIMIT rows that are returned.

When using LIMIT, it is important to use an ORDER BY clause that constrains the result rows into a unique
order. Otherwise you will get an unpredictable subset of the query’s rows. You might be asking for the
tenth through twentieth rows, but tenth through twentieth in what ordering? The ordering is unknown,
unless you specified ORDER BY.

The query optimizer takes LIMIT into account when generating query plans, so you are very likely to get
different plans (yielding different row orders) depending on what you give for LIMIT and OFFSET. Thus,
using different LIMIT/OFFSET values to select different subsets of a query result will give inconsistent
results unless you enforce a predictable result ordering with ORDER BY. This is not a bug; it is an inherent
consequence of the fact that SQL does not promise to deliver the results of a query in any particular order
unless ORDER BY is used to constrain the order.

The rows skipped by an OFFSET clause still have to be computed inside the server; therefore a large
OFFSET might be inefficient.

7.7. vaLUES Lists

VALUES provides a way to generate a “constant table” that can be used in a query without having to
actually create and populate a table on-disk. The syntax is

VALUES (expression [, ...]1) [, ...]

Each parenthesized list of expressions generates a row in the table. The lists must all have the same number
of elements (i.e., the number of columns in the table), and corresponding entries in each list must have
compatible data types. The actual data type assigned to each column of the result is determined using the
same rules as for UNTON (see Section 10.5).

As an example:
VALUES (1, 'one’), (2, 'two’), (3, ’'three’);
will return a table of two columns and three rows. It’s effectively equivalent to:

SELECT 1 AS columnl, ’one’ AS column2
UNION ALL

SELECT 2, ’two’

UNION ALL

SELECT 3, ’three’;

By default, PostgreSQL assigns the names columnl, column2, etc. to the columns of a VALUES table.
The column names are not specified by the SQL standard and different database systems do it differently,
so it’s usually better to override the default names with a table alias list.

Syntactically, VALUES followed by expression lists is treated as equivalent to:

102

Chapter 7. Queries

SELECT select_list FROM table expression

and can appear anywhere a SELECT can. For example, you can use it as part of a UNION, or attach a
sort_specification (ORDER BY, LIMIT, and/or OFFSET) to it. VALUES is most commonly used as
the data source in an INSERT command, and next most commonly as a subquery.

For more information see VALUES.

7.8. wiTH Queries (Common Table Expressions)

WITH provides a way to write subqueries for use in a larger SELECT query. The subqueries, which are
often referred to as Common Table Expressions or CTEs, can be thought of as defining temporary tables
that exist just for this query. One use of this feature is to break down complicated queries into simpler
parts. An example is:

WITH regional_sales AS (
SELECT region, SUM(amount) AS total_sales
FROM orders
GROUP BY region
), top_regions AS (
SELECT region
FROM regional_sales
WHERE total_sales > (SELECT SUM(total_sales)/10 FROM regional_sales)
)
SELECT region,
product,
SUM (quantity) AS product_units,
SUM (amount) AS product_sales
FROM orders
WHERE region IN (SELECT region FROM top_regions)
GROUP BY region, product;

which displays per-product sales totals in only the top sales regions. This example could have been written
without WITH, but we’d have needed two levels of nested sub-SELECTS. It’s a bit easier to follow this
way.

The optional RECURSIVE modifier changes WITH from a mere syntactic convenience into a feature that
accomplishes things not otherwise possible in standard SQL. Using RECURSIVE, a WITH query can refer
to its own output. A very simple example is this query to sum the integers from 1 through 100:

WITH RECURSIVE t(n) AS (
VALUES (1)
UNION ALL
SELECT n+l FROM t WHERE n < 100

)
SELECT sum(n) FROM t;

The general form of a recursive WITH query is always a non-recursive term, then UNION (or UNION ALL),
then a recursive term, where only the recursive term can contain a reference to the query’s own output.
Such a query is executed as follows:

103

Chapter 7. Queries
Recursive Query Evaluation

1. Evaluate the non-recursive term. For UNION (but not UNION ALL), discard duplicate rows. Include
all remaining rows in the result of the recursive query, and also place them in a temporary working
table.

2. So long as the working table is not empty, repeat these steps:

a. Evaluate the recursive term, substituting the current contents of the working table for the
recursive self-reference. For UNTION (but not UNION ALL), discard duplicate rows and rows
that duplicate any previous result row. Include all remaining rows in the result of the recur-
sive query, and also place them in a temporary intermediate table.

b. Replace the contents of the working table with the contents of the intermediate table, then
empty the intermediate table.

Note: Strictly speaking, this process is iteration not recursion, but RECURSIVE is the terminology cho-
sen by the SQL standards committee.

In the example above, the working table has just a single row in each step, and it takes on the values from
1 through 100 in successive steps. In the 100th step, there is no output because of the WHERE clause, and
so the query terminates.

Recursive queries are typically used to deal with hierarchical or tree-structured data. A useful example is
this query to find all the direct and indirect sub-parts of a product, given only a table that shows immediate
inclusions:

WITH RECURSIVE included_parts (sub_part, part, quantity) AS (
SELECT sub_part, part, quantity FROM parts WHERE part = ’'our_product’
UNION ALL
SELECT p.sub_part, p.part, p.quantity
FROM included_parts pr, parts p
WHERE p.part = pr.sub_part
)
SELECT sub_part, SUM(quantity) as total_quantity
FROM included_parts
GROUP BY sub_part

When working with recursive queries it is important to be sure that the recursive part of the query will
eventually return no tuples, or else the query will loop indefinitely. Sometimes, using UNION instead of
UNION ALL can accomplish this by discarding rows that duplicate previous output rows. However, often
a cycle does not involve output rows that are completely duplicate: it may be necessary to check just one
or a few fields to see if the same point has been reached before. The standard method for handling such
situations is to compute an array of the already-visited values. For example, consider the following query
that searches a table graph using a 1ink field:

WITH RECURSIVE search_graph(id, link, data, depth) AS (

SELECT g.id, g.link, g.data, 1
FROM graph g

104

Chapter 7. Queries

UNION ALL
SELECT g.id, g.link, g.data, sg.depth + 1
FROM graph g, search_graph sg
WHERE g.id = sg.link
)
SELECT x FROM search_graph;

This query will loop if the 1ink relationships contain cycles. Because we require a “depth” output, just
changing UNION ALL to UNION would not eliminate the looping. Instead we need to recognize whether
we have reached the same row again while following a particular path of links. We add two columns path

and cycle to the loop-prone query:

WITH RECURSIVE search_graph(id, 1link, data, depth, path, cycle) AS (
SELECT g.id, g.link, g.data, 1,
ARRAY [g.id],
false
FROM graph g
UNION ALL
SELECT g.id, g.link, g.data, sg.depth + 1,
path || g.id,
g.id = ANY (path)
FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT cycle
)
SELECT = FROM search_graph;

Aside from preventing cycles, the array value is often useful in its own right as representing the “path”

taken to reach any particular row.

In the general case where more than one field needs to be checked to recognize a cycle, use an array of
rows. For example, if we needed to compare fields £1 and £2:

WITH RECURSIVE search_graph(id, 1link, data, depth, path, cycle) AS (

SELECT g.id, g.link, g.data, 1,
ARRAY [ROW (g.f1l, g.f2)],
false

FROM graph g

UNION ALL

SELECT g.id, g.link, g.data, sg.depth + 1,
path || ROW(g.fl, g.f2),
ROW(g.fl, g.f2) = ANY (path)

FROM graph g, search_graph sg

WHERE g.id = sg.link AND NOT cycle

)
SELECT = FROM search_graph;

Tip: Omit the row () syntax in the common case where only one field needs to be checked to recognize
a cycle. This allows a simple array rather than a composite-type array to be used, gaining efficiency.

105

Chapter 7. Queries

Tip: The recursive query evaluation algorithm produces its output in breadth-first search order. You
can display the results in depth-first search order by making the outer query orDER BY a “path” column
constructed in this way.

A helpful trick for testing queries when you are not certain if they might loop is to place a LIMIT in the
parent query. For example, this query would loop forever without the LIMIT:

WITH RECURSIVE t (n) AS (
SELECT 1
UNION ALL
SELECT n+l FROM t

)
SELECT n FROM t LIMIT 100;

This works because PostgreSQL’s implementation evaluates only as many rows of a WITH query as are
actually fetched by the parent query. Using this trick in production is not recommended, because other
systems might work differently. Also, it usually won’t work if you make the outer query sort the recursive
query’s results or join them to some other table.

A useful property of WITH queries is that they are evaluated only once per execution of the parent query,
even if they are referred to more than once by the parent query or sibling WITH queries. Thus, expensive
calculations that are needed in multiple places can be placed within a wITH query to avoid redundant work.
Another possible application is to prevent unwanted multiple evaluations of functions with side-effects.
However, the other side of this coin is that the optimizer is less able to push restrictions from the parent
query down into a WITH query than an ordinary sub-query. The WITH query will generally be evaluated
as stated, without suppression of rows that the parent query might discard afterwards. (But, as mentioned
above, evaluation might stop early if the reference(s) to the query demand only a limited number of rows.)

106

Chapter 8. Data Types

PostgreSQL has a rich set of native data types available to users. Users can add new types to PostgreSQL
using the CREATE TYPE command.

Table 8-1 shows all the built-in general-purpose data types. Most of the alternative names listed in the
“Aliases” column are the names used internally by PostgreSQL for historical reasons. In addition, some
internally used or deprecated types are available, but are not listed here.

Table 8-1. Data Types

Name Aliases Description

bigint int8 signed eight-byte integer

bigserial serial8 autoincrementing eight-byte
integer

bit [(n)] fixed-length bit string

bit varying [(n)] varbit variable-length bit string

boolean bool logical Boolean (true/false)

box rectangular box on a plane

bytea binary data (“byte array”)

character varying [(n) varchar [(n)] variable-length character string

]

character [(n)] char [(n)] fixed-length character string

cidr IPv4 or IPv6 network address

circle circle on a plane

date calendar date (year, month, day)

double precision float$ double precision floating-point
number (8 bytes)

inet IPv4 or IPv6 host address

integer int, int4 signed four-byte integer

interval [fields] [(p) time span

]

line infinite line on a plane

lseg line segment on a plane

macaddr MAC (Media Access Control)
address

money currency amount

numeric [(p, s)] decimal [(p, s)] exact numeric of selectable
precision

path geometric path on a plane

point geometric point on a plane

polygon closed geometric path on a plane

107

Chapter 8. Data Types

Name Aliases Description

real float4 single precision floating-point
number (4 bytes)

smallint int2 signed two-byte integer

serial seriald autoincrementing four-byte
integer

text variable-length character string

time [(p)] [without time of day (no time zone)

time zone]

time [(p)] with time timetz time of day, including time zone

zone

timestamp [(p) 1 I date and time (no time zone)

without time zone]

timestamp [(p)] with timestamptz date and time, including time

time zone

zone

tsquery

text search query

tsvector

text search document

txid_snapshot

user-level transaction ID

snapshot
uuid universally unique identifier
xml XML data

Compatibility: The following types (or spellings thereof) are specified by SQL: bigint, bit, bit
varying, boolean, char, character varying, character, varchar, date, double precision,
integer, interval, numeric, decimal, real, smallint, time (with or without time zone),
timestamp (With or without time zone), xm1.

Each data type has an external representation determined by its input and output functions. Many of the
built-in types have obvious external formats. However, several types are either unique to PostgreSQL,
such as geometric paths, or have several possible formats, such as the date and time types. Some of the
input and output functions are not invertible, i.e., the result of an output function might lose accuracy
when compared to the original input.

8.1. Numeric Types

Numeric types consist of two-, four-, and eight-byte integers, four- and eight-byte floating-point numbers,

and selectable-precision decimals. Table 8-2 lists the available types.

Table 8-2. Numeric Types

Name

Storage Size

Description

Range

smallint

2 bytes

small-range integer

-32768 to +32767

108

Chapter 8. Data Types

Name Storage Size Description Range
integer 4 bytes typical choice for -2147483648 to
integer +2147483647
bigint 8 bytes large-range integer -9223372036854775808
to
9223372036854775807
decimal variable user-specified precision, | no limit
exact
numeric variable user-specified precision, | no limit
exact
real 4 bytes variable-precision, 6 decimal digits
inexact precision
double precision 8 bytes variable-precision, 15 decimal digits
inexact precision
serial 4 bytes autoincrementing 1 to 2147483647
integer
bigserial 8 bytes large autoincrementing | 1 to
integer 9223372036854775807

The syntax of constants for the numeric types is described in Section 4.1.2. The numeric types have a full
set of corresponding arithmetic operators and functions. Refer to Chapter 9 for more information. The
following sections describe the types in detail.

8.1.1. Integer Types

The types smallint, integer, and bigint store whole numbers, that is, numbers without fractional
components, of various ranges. Attempts to store values outside of the allowed range will result in an
error.

The type integer is the common choice, as it offers the best balance between range, storage size, and
performance. The smallint type is generally only used if disk space is at a premium. The bigint type
should only be used if the integer range is insufficient, because the latter is definitely faster.

On very minimal operating systems the bigint type might not function correctly, because it relies on
compiler support for eight-byte integers. On such machines, bigint acts the same as integer, but still
takes up eight bytes of storage. (We are not aware of any modern platform where this is the case.)

SQL only specifies the integer types integer (or int), smallint, and bigint. The type names int2,
int4, and int8 are extensions, which are also used by some other SQL database systems.

8.1.2. Arbitrary Precision Numbers

The type numeric can store numbers with up to 1000 digits of precision and perform calculations ex-
actly. It is especially recommended for storing monetary amounts and other quantities where exactness is
required. However, arithmetic on numeric values is very slow compared to the integer types, or to the
floating-point types described in the next section.

109

Chapter 8. Data Types

We use the following terms below: The scale of a numeric is the count of decimal digits in the fractional
part, to the right of the decimal point. The precision of a numeric is the total count of significant digits in
the whole number, that is, the number of digits to both sides of the decimal point. So the number 23.5141
has a precision of 6 and a scale of 4. Integers can be considered to have a scale of zero.

Both the maximum precision and the maximum scale of a numeric column can be configured. To declare
a column of type numeric use the syntax:

NUMERIC (precision, scale)

The precision must be positive, the scale zero or positive. Alternatively:
NUMERIC (precision)

selects a scale of 0. Specifying:

NUMERIC

without any precision or scale creates a column in which numeric values of any precision and scale can
be stored, up to the implementation limit on precision. A column of this kind will not coerce input values
to any particular scale, whereas numeric columns with a declared scale will coerce input values to that
scale. (The SQL standard requires a default scale of 0, i.e., coercion to integer precision. We find this a bit
useless. If you’re concerned about portability, always specify the precision and scale explicitly.)

If the scale of a value to be stored is greater than the declared scale of the column, the system will round
the value to the specified number of fractional digits. Then, if the number of digits to the left of the decimal
point exceeds the declared precision minus the declared scale, an error is raised.

Numeric values are physically stored without any extra leading or trailing zeroes. Thus, the declared
precision and scale of a column are maximums, not fixed allocations. (In this sense the numeric type is
more akin to varchar (n) than to char (n).) The actual storage requirement is two bytes for each group
of four decimal digits, plus five to eight bytes overhead.

In addition to ordinary numeric values, the numeric type allows the special value NaN, meaning “not-
a-number”. Any operation on NaN yields another NaN. When writing this value as a constant in an SQL
command, you must put quotes around it, for example UPDATE table SET x = ’NaN’. On input, the
string NaN is recognized in a case-insensitive manner.

Note: In most implementations of the “not-a-number” concept, nan is not considered equal to any
other numeric value (including nan). In order to allow numeric values to be sorted and used in tree-
based indexes, PostgreSQL treats nan values as equal, and greater than all non-nan values.

The types decimal and numeric are equivalent. Both types are part of the SQL standard.

8.1.3. Floating-Point Types

The data types real and double precision are inexact, variable-precision numeric types. In practice,
these types are usually implementations of IEEE Standard 754 for Binary Floating-Point Arithmetic (sin-
gle and double precision, respectively), to the extent that the underlying processor, operating system, and
compiler support it.

110

Chapter 8. Data Types

Inexact means that some values cannot be converted exactly to the internal format and are stored as
approximations, so that storing and retrieving a value might show slight discrepancies. Managing these
errors and how they propagate through calculations is the subject of an entire branch of mathematics and
computer science and will not be discussed here, except for the following points:

« If you require exact storage and calculations (such as for monetary amounts), use the numeric type
instead.

« If you want to do complicated calculations with these types for anything important, especially if you
rely on certain behavior in boundary cases (infinity, underflow), you should evaluate the implementation
carefully.

« Comparing two floating-point values for equality might not always work as expected.

On most platforms, the real type has a range of at least 1E-37 to 1E+37 with a precision of at least 6
decimal digits. The double precision type typically has a range of around 1E-307 to 1E+308 with
a precision of at least 15 digits. Values that are too large or too small will cause an error. Rounding
might take place if the precision of an input number is too high. Numbers too close to zero that are not
representable as distinct from zero will cause an underflow error.

In addition to ordinary numeric values, the floating-point types have several special values:

Infinity
—Infinity
NaN

CLINNTS

These represent the IEEE 754 special values “infinity”, “negative infinity”, and “not-a-number”, respec-
tively. (On a machine whose floating-point arithmetic does not follow IEEE 754, these values will prob-
ably not work as expected.) When writing these values as constants in an SQL command, you must put
quotes around them, for example UPDATE table SET x = 'Infinity’. On input, these strings are
recognized in a case-insensitive manner.

Note: IEEE754 specifies that nan should not compare equal to any other floating-point value (including
NaN). In order to allow floating-point values to be sorted and used in tree-based indexes, PostgreSQL
treats Nan values as equal, and greater than all non-nan values.

PostgreSQL also supports the SQL-standard notations float and float (p) for specifying inexact nu-
meric types. Here, p specifies the minimum acceptable precision in binary digits. PostgreSQL accepts
float (1) to float (24) as selecting the real type, while float (25) to float (53) select double
precision. Values of p outside the allowed range draw an error. f1oat with no precision specified is
taken to mean double precision.

Note: Prior to PostgreSQL 7.4, the precision in f1oat (p) was taken to mean so many decimal digits.
This has been corrected to match the SQL standard, which specifies that the precision is measured
in binary digits. The assumption that real and double precision have exactly 24 and 53 bits in
the mantissa respectively is correct for IEEE-standard floating point implementations. On non-IEEE
platforms it might be off a little, but for simplicity the same ranges of p are used on all platforms.

111

Chapter 8. Data Types

8.1.4. Serial Types

The data types serial and bigserial are not true types, but merely a notational convenience for
creating unique identifier columns (similar to the AUTO_INCREMENT property supported by some other
databases). In the current implementation, specifying:

CREATE TABLE tablename (
colname SERIAL

)i
is equivalent to specifying:

CREATE SEQUENCE tablename_colname_seq;
CREATE TABLE tablename (
colname integer NOT NULL DEFAULT nextval (' tablename_colname_seq’)
)i
ALTER SEQUENCE tablename_colname_seq OWNED BY tablename.colname;

Thus, we have created an integer column and arranged for its default values to be assigned from a sequence
generator. A NOT NULL constraint is applied to ensure that a null value cannot be inserted. (In most cases
you would also want to attach a UNIQUE or PRIMARY KEY constraint to prevent duplicate values from
being inserted by accident, but this is not automatic.) Lastly, the sequence is marked as “owned by’ the
column, so that it will be dropped if the column or table is dropped.

Note: Prior to PostgreSQL 7.3, serial implied un1iQuE. This is no longer automatic. If you wish a
serial column to have a unique constraint or be a primary key, it must now be specified, just like any
other data type.

To insert the next value of the sequence into the serial column, specify that the serial column should
be assigned its default value. This can be done either by excluding the column from the list of columns in
the INSERT statement, or through the use of the DEFAULT key word.

The type names serial and serial4 are equivalent: both create integer columns. The type names
bigserial and serial8 work the same way, except that they create a bigint column. bigserial
should be used if you anticipate the use of more than 2*' identifiers over the lifetime of the table.

The sequence created for a serial column is automatically dropped when the owning column is dropped.
You can drop the sequence without dropping the column, but this will force removal of the column default
expression.

8.2. Monetary Types

The money type stores a currency amount with a fixed fractional precision; see Table 8-3. The fractional
precision is determined by the database’s lc_monetary setting. Input is accepted in a variety of formats,
including integer and floating-point literals, as well as typical currency formatting, suchas * $1, 000.00".

112

Chapter 8. Data Types

Output is generally in the latter form but depends on the locale. Non-quoted numeric values can be con-
verted to money by casting the numeric value to text and then money, for example:

SELECT 1234::text::money;

There is no simple way of doing the reverse in a locale-independent manner, namely casting a money
value to a numeric type. If you know the currency symbol and thousands separator you can use

regexp_replace():

SELECT regexp_replace(’52093.89’ ::money::text, ’'[$,]1', ", 'g’)::numeric;

Since the output of this data type is locale-sensitive, it might not work to load money data into a database
that has a different setting of 1c_monetary. To avoid problems, before restoring a dump into a new
database make sure 1c_monetary has the same or equivalent value as in the database that was dumped.

Table 8-3. Monetary Types

Name Storage Size Description Range

money 8 bytes currency amount -
92233720368547758.08
to
+92233720368547758.07

8.3. Character Types

Table 8-4. Character Types

Name Description

character varying(n), varchar (n) variable-length with limit
character (n), char (n) fixed-length, blank padded
text variable unlimited length

Table 8-4 shows the general-purpose character types available in PostgreSQL.

SQL defines two primary character types: character varying(n) and character (n), where nis a
positive integer. Both of these types can store strings up to n characters (not bytes) in length. An attempt
to store a longer string into a column of these types will result in an error, unless the excess characters
are all spaces, in which case the string will be truncated to the maximum length. (This somewhat bizarre
exception is required by the SQL standard.) If the string to be stored is shorter than the declared length,
values of type character will be space-padded; values of type character varying will simply store
the shorter string.

If one explicitly casts a value to character varying(n) or character (n), then an over-length value
will be truncated to n characters without raising an error. (This too is required by the SQL standard.)

113

Chapter 8. Data Types

The notations varchar (n) and char (n) are aliases for character varying(n) and character (n),
respectively. character without length specifier is equivalent to character(l). If character
varying is used without length specifier, the type accepts strings of any size. The latter is a PostgreSQL
extension.

In addition, PostgreSQL provides the text type, which stores strings of any length. Although the type
text is not in the SQL standard, several other SQL database management systems have it as well.

Values of type character are physically padded with spaces to the specified width n, and are stored
and displayed that way. However, the padding spaces are treated as semantically insignificant. Trailing
spaces are disregarded when comparing two values of type character, and they will be removed when
converting a character value to one of the other string types. Note that trailing spaces are semantically
significant in character varying and text values.

The storage requirement for a short string (up to 126 bytes) is 1 byte plus the actual string, which includes
the space padding in the case of character. Longer strings have 4 bytes of overhead instead of 1. Long
strings are compressed by the system automatically, so the physical requirement on disk might be less.
Very long values are also stored in background tables so that they do not interfere with rapid access to
shorter column values. In any case, the longest possible character string that can be stored is about 1 GB.
(The maximum value that will be allowed for n in the data type declaration is less than that. It wouldn’t be
useful to change this because with multibyte character encodings the number of characters and bytes can
be quite different. If you desire to store long strings with no specific upper limit, use text or character
varying without a length specifier, rather than making up an arbitrary length limit.)

Tip: There is no performance difference among these three types, apart from increased storage space
when using the blank-padded type, and a few extra CPU cycles to check the length when storing
into a length-constrained column. While character (n) has performance advantages in some other
database systems, there is no such advantage in PostgreSQL; in fact character (n) is usually the
slowest of the three because of its additional storage costs. In most situations text or character
varying should be used instead.

Refer to Section 4.1.2.1 for information about the syntax of string literals, and to Chapter 9 for information
about available operators and functions. The database character set determines the character set used to
store textual values; for more information on character set support, refer to Section 22.2.

Example 8-1. Using the character types

CREATE TABLE testl (a character(4));
INSERT INTO testl VALUES (’'ok’);

SELECT a, char_length(a) FROM testl; —- ©
a | char_length

______ o

ok | 2

CREATE TABLE test2 (b varchar(5));

INSERT INTO test2 VALUES ('ok’);

INSERT INTO test2 VALUES (’good "y

INSERT INTO test2 VALUES (’'too long’);

ERROR: value too long for type character varying(5)

INSERT INTO test2 VALUES (’too long’::varchar(5)); —-- explicit truncation

114

Chapter 8. Data Types

SELECT b, char_length(b) FROM test2;

b | char_length
_______ T,
ok | 2

good |
too 1 | 5

©® The char_length function is discussed in Section 9.4.

There are two other fixed-length character types in PostgreSQL, shown in Table 8-5. The name type
exists only for the storage of identifiers in the internal system catalogs and is not intended for use by the
general user. Its length is currently defined as 64 bytes (63 usable characters plus terminator) but should
be referenced using the constant NAMEDATALEN in C source code. The length is set at compile time (and is
therefore adjustable for special uses); the default maximum length might change in a future release. The
type "char" (note the quotes) is different from char (1) in that it only uses one byte of storage. It is
internally used in the system catalogs as a simplistic enumeration type.

Table 8-5. Special Character Types

Name Storage Size Description
"char" 1 byte single-byte internal type
name 64 bytes internal type for object names

8.4. Binary Data Types

The bytea data type allows storage of binary strings; see Table 8-6.

Table 8-6. Binary Data Types

Name Storage Size Description

bytea 1 or 4 bytes plus the actual variable-length binary string
binary string

A binary string is a sequence of octets (or bytes). Binary strings are distinguished from character strings
in two ways. First, binary strings specifically allow storing octets of value zero and other “non-printable”
octets (usually, octets outside the range 32 to 126). Character strings disallow zero octets, and also dis-
allow any other octet values and sequences of octet values that are invalid according to the database’s
selected character set encoding. Second, operations on binary strings process the actual bytes, whereas
the processing of character strings depends on locale settings. In short, binary strings are appropriate for
storing data that the programmer thinks of as “raw bytes”, whereas character strings are appropriate for
storing text.

The bytea type supports two external formats for input and output: PostgreSQL’s historical “escape”
format, and “hex” format. Both of these are always accepted on input. The output format depends on
the configuration parameter bytea_output; the default is hex. (Note that the hex format was introduced in
PostgreSQL 9.0; earlier versions and some tools don’t understand it.)

115

Chapter 8. Data Types

The SQL standard defines a different binary string type, called BLOB or BINARY LARGE OBJECT. The
input format is different from bytea, but the provided functions and operators are mostly the same.

8.4.1. bytea hex format

The “hex” format encodes binary data as 2 hexadecimal digits per byte, most significant nibble first. The
entire string is preceded by the sequence \x (to distinguish it from the escape format). In some contexts,
the initial backslash may need to be escaped by doubling it, in the same cases in which backslashes have
to be doubled in escape format; details appear below. The hexadecimal digits can be either upper or lower
case, and whitespace is permitted between digit pairs (but not within a digit pair nor in the starting \x
sequence). The hex format is compatible with a wide range of external applications and protocols, and it
tends to be faster to convert than the escape format, so its use is preferred.

Example:

SELECT E’\\xDEADBEEF’;

8.4.2. bytea escape format

The “escape” format is the traditional PostgreSQL format for the bytea type. It takes the approach of
representing a binary string as a sequence of ASCII characters, while converting those bytes that cannot
be represented as an ASCII character into special escape sequences. If, from the point of view of the
application, representing bytes as characters makes sense, then this representation can be convenient. But
in practice it is usually confusing because it fuzzes up the distinction between binary strings and character
strings, and also the particular escape mechanism that was chosen is somewhat unwieldy. So this format
should probably be avoided for most new applications.

When entering bytea values in escape format, octets of certain values must be escaped, while all octet
values can be escaped. In general, to escape an octet, convert it into its three-digit octal value and precede
it by a backslash (or two backslashes, if writing the value as a literal using escape string syntax). Back-
slash itself (octet value 92) can alternatively be represented by double backslashes. Table 8-7 shows the
characters that must be escaped, and gives the alternative escape sequences where applicable.

Table 8-7. bytea Literal Escaped Octets

Decimal Octet | Description Escaped Input | Example Output
Value Representation Representation
0 zero octet E’\\000’ SELECT \000

E’\\000' : :bytea);

39 single quote 7 orE/\\047/ SELECT ¢
E’\"”::bytea;
92 backslash E’\\\\’ or SELECT A\
E’\\134" E’\\\\’ : :bytea;

116

Chapter 8. Data Types

Decimal Octet |Description Escaped Input | Example Output

Value Representation Representation
0to 31 and 127 to | “non-printable” E’ \\xxx’ (octal SELECT \001

255 octets value) E’\\001’ : :bytea|;

The requirement to escape non-printable octets varies depending on locale settings. In some instances you
can get away with leaving them unescaped. Note that the result in each of the examples in Table 8-7 was
exactly one octet in length, even though the output representation is sometimes more than one character.

The reason multiple backslashes are required, as shown in Table 8-7, is that an input string written as a
string literal must pass through two parse phases in the PostgreSQL server. The first backslash of each pair
is interpreted as an escape character by the string-literal parser (assuming escape string syntax is used)
and is therefore consumed, leaving the second backslash of the pair. (Dollar-quoted strings can be used to
avoid this level of escaping.) The remaining backslash is then recognized by the bytea input function as
starting either a three digit octal value or escaping another backslash. For example, a string literal passed
to the server as E/ \\ 001’ becomes \001 after passing through the escape string parser. The \ 001 is then
sent to the bytea input function, where it is converted to a single octet with a decimal value of 1. Note
that the single-quote character is not treated specially by bytea, so it follows the normal rules for string
literals. (See also Section 4.1.2.1.)

Bytea octets are sometimes escaped when output. In general, each “non-printable” octet is converted
into its equivalent three-digit octal value and preceded by one backslash. Most “printable” octets are
represented by their standard representation in the client character set. The octet with decimal value 92
(backslash) is doubled in the output. Details are in Table 8-8.

Table 8-8. bytea Output Escaped Octets

Decimal Octet | Description Escaped Output | Example Output Result
Value Representation
92 backslash AN\ SELECT \\

E’\\134’ : :bytea|;

0to 31 and 127 to | “non-printable” \xxx (octal value) |SELECT \001

255 octets E’\\001’ : :bytea|;

32to 126 “printable” octets | client character set | SELECT ~
representation E’\\176’ : :bytea|;

Depending on the front end to PostgreSQL you use, you might have additional work to do in terms
of escaping and unescaping bytea strings. For example, you might also have to escape line feeds and
carriage returns if your interface automatically translates these.

8.5. Date/Time Types

PostgreSQL supports the full set of SQL date and time types, shown in Table 8-9. The operations available

117

Chapter 8. Data Types

on these data types are described in Section 9.9.

Table 8-9. Date/Time Types

Name Storage Size |Description |Low Value High Value Resolution
timestamp [|8 bytes both date and | 4713 BC 294276 AD 1 microsecond /
) 11 time (no time 14 digits
without zone)
time zone]
timestamp [|8 bytes both date and | 4713 BC 294276 AD 1 microsecond /
(p) 1 with time, with time 14 digits
time zone zone
date 4 bytes date (no time of | 4713 BC 5874897 AD 1 day

day)
time [(p) 8 bytes time of day (no | 00:00:00 24:00:00 1 microsecond /
] [without date) 14 digits
time zone]
time [(p) 12 bytes times of day 00:00:00+1459 |24:00:00-1459 | 1 microsecond /
] with time only, with time 14 digits
zone zone
interval [12 bytes time interval -178000000 178000000 1 microsecond /
fields 1 [years years 14 digits
(p)]

Note: The SQL standard requires that writing just t imestamp be equivalent to timestamp without
time zone, and PostgreSQL honors that behavior. (Releases prior to 7.3 treated it as timestamp

with time zone.)

time, timestamp, and interval accept an optional precision value p which specifies the number of
fractional digits retained in the seconds field. By default, there is no explicit bound on precision. The
allowed range of p is from O to 6 for the t imestamp and interval types.

Note: When timestamp values are stored as eight-byte integers (currently the default), microsecond
precision is available over the full range of values. When t imestamp values are stored as double preci-
sion floating-point numbers instead (a deprecated compile-time option), the effective limit of precision
might be less than 6. timestamp values are stored as seconds before or after midnight 2000-01-
01. When timestamp values are implemented using floating-point numbers, microsecond precision is
achieved for dates within a few years of 2000-01-01, but the precision degrades for dates further away.
Note that using floating-point datetimes allows a larger range of t imestamp values to be represented
than shown above: from 4713 BC up to 5874897 AD.

The same compile-time option also determines whether time and interval values are stored as
floating-point numbers or eight-byte integers. In the floating-point case, large interval values de-
grade in precision as the size of the interval increases.

118

Chapter 8. Data Types

For the t ime types, the allowed range of p is from 0O to 6 when eight-byte integer storage is used, or from
0 to 10 when floating-point storage is used.

The interval type has an additional option, which is to restrict the set of stored fields by writing one of
these phrases:

YEAR

MONTH

DAY

HOUR

MINUTE

SECOND

YEAR TO MONTH
DAY TO HOUR
DAY TO MINUTE
DAY TO SECOND
HOUR TO MINUTE
HOUR TO SECOND
MINUTE TO SECOND

Note that if both fields and p are specified, the fields must include SECOND, since the precision
applies only to the seconds.

The type time with time zone is defined by the SQL standard, but the definition exhibits properties
which lead to questionable usefulness. In most cases, a combination of date, time, timestamp
without time zone, and timestamp with time zone should provide a complete range of
date/time functionality required by any application.

The types abst ime and reltime are lower precision types which are used internally. You are discouraged
from using these types in applications; these internal types might disappear in a future release.

8.5.1. Date/Time Input

Date and time input is accepted in almost any reasonable format, including ISO 8601, SQL-compatible,
traditional POSTGRES, and others. For some formats, ordering of day, month, and year in date input is
ambiguous and there is support for specifying the expected ordering of these fields. Set the DateStyle
parameter to MDY to select month-day-year interpretation, DMY to select day-month-year interpretation, or
YMD to select year-month-day interpretation.

PostgreSQL is more flexible in handling date/time input than the SQL standard requires. See Appendix B
for the exact parsing rules of date/time input and for the recognized text fields including months, days of
the week, and time zones.

Remember that any date or time literal input needs to be enclosed in single quotes, like text strings. Refer
to Section 4.1.2.7 for more information. SQL requires the following syntax

type [(p) 1 'value’

where p is an optional precision specification giving the number of fractional digits in the seconds field.
Precision can be specified for t ime, t imestamp, and interval types. The allowed values are mentioned
above. If no precision is specified in a constant specification, it defaults to the precision of the literal value.

119

Chapter 8. Data Types

8.5.1.1. Dates

Table 8-10 shows some possible inputs for the date type.

Table 8-10. Date Input

Example Description

1999-01-08 ISO 8601; January 8 in any mode (recommended
format)

January 8, 1999 unambiguous in any datestyle input mode

1/8/1999 January 8 in MDY mode; August 1 in DMY mode

1/18/1999 January 18 in MDY mode; rejected in other modes

01/02/03 January 2, 2003 in MDY mode; February 1, 2003 in
DMY mode; February 3, 2001 in YMD mode

1999-Jan-08 January 8 in any mode

Jan-08-1999 January 8 in any mode

08-Jan-1999 January 8 in any mode

99-Jan-08 January 8 in YMD mode, else error

08-Jan-99 January 8, except error in YMD mode

Jan-08-99 January 8, except error in YMD mode

19990108 ISO 8601; January 8, 1999 in any mode

990108 ISO 8601; January 8, 1999 in any mode

1999.008 year and day of year

J2451187 Julian day

January 8, 99 BC year 99 BC

8.5.1.2. Times

The time-of-day types are time [(p)] without time zone and time [(p)] with time
zone. time alone is equivalent to time without time zone.

Valid input for these types consists of a time of day followed by an optional time zone. (See Table 8-11
and Table 8-12.) If a time zone is specified in the input for time without time zone, it is silently
ignored. You can also specify a date but it will be ignored, except when you use a time zone name that
involves a daylight-savings rule, such as America/New_York. In this case specifying the date is required
in order to determine whether standard or daylight-savings time applies. The appropriate time zone offset
isrecorded in the time with time zone value.

Table 8-11. Time Input

Example Description
04:05:06.789 ISO 8601
04:05:06 ISO 8601
04:05 ISO 8601

120

Chapter 8. Data Types

Example Description

040506 ISO 8601

04:05 AM same as 04:05; AM does not affect value
04:05 PM same as 16:05; input hour must be <= 12
04:05:06.789-8 ISO 8601

04:05:06-08:00 ISO 8601

04:05-08:00 ISO 8601

040506-08 ISO 8601

04:05:06 PST time zone specified by abbreviation
2003-04-12 04:05:06 America/New_York |time zone specified by full name

Table 8-12. Time Zone Input

Example Description

PST Abbreviation (for Pacific Standard Time)
America/New_York Full time zone name

PST8PDT POSIX-style time zone specification
-8:00 ISO-8601 offset for PST

-800 ISO-8601 offset for PST

-8 ISO-8601 offset for PST

zulu Military abbreviation for UTC

z Short form of zulu

Refer to Section 8.5.3 for more information on how to specify time zones.

8.5.1.3. Time Stamps

Valid input for the time stamp types consists of the concatenation of a date and a time, followed by an
optional time zone, followed by an optional AD or BC. (Alternatively, AD/BC can appear before the time
zone, but this is not the preferred ordering.) Thus:

1999-01-08 04:05:06

and:

1999-01-08 04:05:06 -8:00

are valid values, which follow the ISO 8601 standard. In addition, the common format:
January 8 04:05:06 1999 PST

is supported.

The SQL standard differentiates timestamp without time zone and timestamp with time
zone literals by the presence of a “+” or “-” symbol and time zone offset after the time. Hence, according
to the standard,

121

Chapter 8. Data Types
TIMESTAMP ’2004-10-19 10:23:54"

isatimestamp without time zone, while

TIMESTAMP "2004-10-19 10:23:54+02’

is a timestamp with time zone. PostgreSQL never examines the content of a literal string before
determining its type, and therefore will treat both of the above as t imestamp without time zone.To
ensure that a literal is treated as timestamp with time zone, give it the correct explicit type:

TIMESTAMP WITH TIME ZONE ’2004-10-19 10:23:54+02'

In a literal that has been determined to be t imestamp without time zone, PostgreSQL will silently
ignore any time zone indication. That is, the resulting value is derived from the date/time fields in the
input value, and is not adjusted for time zone.

For timestamp with time zone, the internally stored value is always in UTC (Universal Coordinated
Time, traditionally known as Greenwich Mean Time, GMT). An input value that has an explicit time zone
specified is converted to UTC using the appropriate offset for that time zone. If no time zone is stated in
the input string, then it is assumed to be in the time zone indicated by the system’s timezone parameter,
and is converted to UTC using the offset for the t imezone zone.

When a timestamp with time zone value is output, it is always converted from UTC to the current
timezone zone, and displayed as local time in that zone. To see the time in another time zone, either
change timezone or use the AT TIME ZONE construct (see Section 9.9.3).

Conversions between t imestamp without time zone and timestamp with time zone normally
assume that the timestamp without time zone value should be taken or given as timezone local
time. A different time zone can be specified for the conversion using AT TIME ZONE.

8.5.1.4. Special Values

PostgreSQL supports several special date/time input values for convenience, as shown in Table 8-13.
The values infinity and —~infinity are specially represented inside the system and will be displayed
unchanged; but the others are simply notational shorthands that will be converted to ordinary date/time
values when read. (In particular, now and related strings are converted to a specific time value as soon as
they are read.) All of these values need to be enclosed in single quotes when used as constants in SQL
commands.

Table 8-13. Special Date/Time Inputs

Input String Valid Types Description

epoch date, timestamp 1970-01-01 00:00:004+00 (Unix
system time zero)

infinity date, timestamp later than all other time stamps

—infinity date, timestamp earlier than all other time stamps

now date, time, timestamp current transaction’s start time

today date, timestamp midnight today

tomorrow date, timestamp midnight tomorrow

122

Chapter 8. Data Types

Input String Valid Types Description
yesterday date, timestamp midnight yesterday
allballs time 00:00:00.00 UTC

The following SQL-compatible functions can also be used to obtain the current time value for the
corresponding data type: CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP, LOCALTIME,
LocALTIMESTAMP. The latter four accept an optional subsecond precision specification. (See Section
9.9.4.) Note that these are SQL functions and are not recognized in data input strings.

8.5.2. Date/Time Output

The output format of the date/time types can be set to one of the four styles ISO 8601, SQL (Ingres),
traditional POSTGRES (Unix date format), or German. The default is the ISO format. (The SQL standard
requires the use of the ISO 8601 format. The name of the “SQL” output format is a historical accident.)
Table 8-14 shows examples of each output style. The output of the date and t ime types is of course only
the date or time part in accordance with the given examples.

Table 8-14. Date/Time Output Styles

Style Specification Description Example

ISO ISO 8601/SQL standard 1997-12-17 07:37:16-08

SQL traditional style 12/17/1997 07:37:16.00 PST
POSTGRES original style Wed Dec 17 07:37:16 1997 PST
German regional style 17.12.1997 07:37:16.00 PST

In the SQL and POSTGRES styles, day appears before month if DMY field ordering has been specified,
otherwise month appears before day. (See Section 8.5.1 for how this setting also affects interpretation of
input values.) Table 8-15 shows an example.

Table 8-15. Date Order Conventions

datestyle Setting Input Ordering Example Output

SQL, DMY day/month/year 17/12/1997 15:37:16.00 CET
SQL, MDY monthl/daylyear 12/17/1997 07:37:16.00 PST
Postgres, DMY day/monthlyear Wed 17 Dec 07:37:16 1997 PST

The date/time styles can be selected by the user using the SET datestyle command, the DateStyle
parameter in the postgresqgl.conf configuration file, or the PGDATESTYLE environment variable on
the server or client. The formatting function to_char (see Section 9.8) is also available as a more flexible
way to format date/time output.

8.5.3. Time Zones

Time zones, and time-zone conventions, are influenced by political decisions, not just earth geometry.

123

Chapter 8. Data Types

Time zones around the world became somewhat standardized during the 1900’s, but continue to be prone
to arbitrary changes, particularly with respect to daylight-savings rules. PostgreSQL uses the widely-used
zoneinfo time zone database for information about historical time zone rules. For times in the future, the
assumption is that the latest known rules for a given time zone will continue to be observed indefinitely
far into the future.

PostgreSQL endeavors to be compatible with the SQL standard definitions for typical usage. However,
the SQL standard has an odd mix of date and time types and capabilities. Two obvious problems are:

+ Although the date type cannot have an associated time zone, the time type can. Time zones in the
real world have little meaning unless associated with a date as well as a time, since the offset can vary
through the year with daylight-saving time boundaries.

+ The default time zone is specified as a constant numeric offset from UTC. It is therefore impossible to
adapt to daylight-saving time when doing date/time arithmetic across DST boundaries.

To address these difficulties, we recommend using date/time types that contain both date and time when
using time zones. We do not recommend using the type time with time zone (though it is supported
by PostgreSQL for legacy applications and for compliance with the SQL standard). PostgreSQL assumes
your local time zone for any type containing only date or time.

All timezone-aware dates and times are stored internally in UTC. They are converted to local time in the
zone specified by the timezone configuration parameter before being displayed to the client.

PostgreSQL allows you to specify time zones in three different forms:

A full time zone name, for example America/New_York. The recognized time zone names are listed
in the pg_timezone_names view (see Section 45.60). PostgreSQL uses the widely-used zoneinfo
time zone data for this purpose, so the same names are also recognized by much other software.

« A time zone abbreviation, for example PST. Such a specification merely defines a particular offset
from UTC, in contrast to full time zone names which can imply a set of daylight savings transition-
date rules as well. The recognized abbreviations are listed in the pg_timezone_abbrevs view (see
Section 45.59). You cannot set the configuration parameters timezone or log_timezone to a time zone
abbreviation, but you can use abbreviations in date/time input values and with the AT TIME ZONE
operator.

« In addition to the timezone names and abbreviations, PostgreSQL will accept POSIX-style time zone
specifications of the form STDoffset or STDoffsetDST, where STD is a zone abbreviation, offset
is a numeric offset in hours west from UTC, and DST is an optional daylight-savings zone abbreviation,
assumed to stand for one hour ahead of the given offset. For example, if ESTSEDT were not already a
recognized zone name, it would be accepted and would be functionally equivalent to United States East
Coast time. When a daylight-savings zone name is present, it is assumed to be used according to the
same daylight-savings transition rules used in the zoneinfo time zone database’s posixrules entry.
In a standard PostgreSQL installation, posixrules is the same as US/Eastern, so that POSIX-style
time zone specifications follow USA daylight-savings rules. If needed, you can adjust this behavior by
replacing the posixrules file.

In short, this is the difference between abbreviations and full names: abbreviations always represent a
fixed offset from UTC, whereas most of the full names imply a local daylight-savings time rule, and so
have two possible UTC offsets.

124

Chapter 8. Data Types

One should be wary that the POSIX-style time zone feature can lead to silently accepting bogus input,
since there is no check on the reasonableness of the zone abbreviations. For example, SET TIMEZONE TO
FOOBARO will work, leaving the system effectively using a rather peculiar abbreviation for UTC. Another
issue to keep in mind is that in POSIX time zone names, positive offsets are used for locations west of
Greenwich. Everywhere else, PostgreSQL follows the ISO-8601 convention that positive timezone offsets
are east of Greenwich.

In all cases, timezone names are recognized case-insensitively. (This is a change from PostgreSQL ver-
sions prior to 8.2, which were case-sensitive in some contexts but not others.)

Neither full names nor abbreviations are hard-wired into the server; they are obtained from configuration
files stored under . ../share/timezone/ and .../share/timezonesets/ of the installation direc-
tory (see Section B.3).

The timezone configuration parameter can be set in the file postgresql.conf, or in any of the other
standard ways described in Chapter 18. There are also several special ways to set it:

« If timezone is not specified in postgresqgl.conf or as a server command-line option, the server
attempts to use the value of the Tz environment variable as the default time zone. If Tz is not defined or
is not any of the time zone names known to PostgreSQL, the server attempts to determine the operating
system’s default time zone by checking the behavior of the C library function localtime (). The
default time zone is selected as the closest match among PostgreSQL’s known time zones. (These rules
are also used to choose the default value of log_timezone, if not specified.)

+ The SQL command SET TIME ZzONE sets the time zone for the session. This is an alternative spelling
of SET TIMEZONE TO with a more SQL-spec-compatible syntax.

« The PGTZ environment variable is used by libpq clients to send a SET TIME ZONE command to the
server upon connection.

8.5.4. Interval Input

interval values can be written using the following verbose syntax:
[@Q] quantity unit [quantity unit...] [direction]

where quantity is a number (possibly signed); unit iS microsecond, millisecond, second,
minute, hour, day, week, month, year, decade, century, millennium, or abbreviations or plurals
of these units; direction can be ago or empty. The at sign (@) is optional noise. The amounts of the
different units are implicitly added with appropriate sign accounting. ago negates all the fields. This
syntax is also used for interval output, if IntervalStyle is set to postgres_verbose.

Quantities of days, hours, minutes, and seconds can be specified without explicit unit markings. For exam-
ple,”1 12:59:10" isread the same as 1 day 12 hours 59 min 10 sec’. Also, a combination of
years and months can be specified with a dash; for example ' 200-10" is read the same as ' 200 years
10 months’. (These shorter forms are in fact the only ones allowed by the SQL standard, and are used
for output when IntervalStyleis setto sql_standard.)

125

Chapter 8. Data Types

Interval values can also be written as ISO 8601 time intervals, using either the “format with designators”
of the standard’s section 4.4.3.2 or the “alternative format” of section 4.4.3.3. The format with designators
looks like this:

P quantity unit [quantity unit ...] [T [quantity unit ...]]

The string must start with a P, and may include a T that introduces the time-of-day units. The available
unit abbreviations are given in Table 8-16. Units may be omitted, and may be specified in any order, but
units smaller than a day must appear after T. In particular, the meaning of M depends on whether it is
before or after T.

Table 8-16. ISO 8601 interval unit abbreviations

Abbreviation Meaning

Years

Months (in the date part)
Weeks

Days

Hours

Minutes (in the time part)

©wiZz|m|O|= ||

Seconds

In the alternative format:
P [years—months—days] [T hours:minutes:seconds |

the string must begin with P, and a T separates the date and time parts of the interval. The values are given
as numbers similar to ISO 8601 dates.

When writing an interval constant with a £ields specification, or when assigning a string to an interval
column that was defined with a fields specification, the interpretation of unmarked quantities depends
on the fields. For example INTERVAL ’1’ YEARisread as | year, whereas INTERVAL ‘1’ means |
second. Also, field values “to the right” of the least significant field allowed by the fields specification
are silently discarded. For example, writing INTERVAL ’'1 day 2:03:04’ HOUR TO MINUTE results
in dropping the seconds field, but not the day field.

According to the SQL standard all fields of an interval value must have the same sign, so a leading negative
sign applies to all fields; for example the negative sign in the interval literal * -1 2:03:04" applies to both
the days and hour/minute/second parts. PostgreSQL allows the fields to have different signs, and tradition-
ally treats each field in the textual representation as independently signed, so that the hour/minute/second
part is considered positive in this example. If IntervalStyle is set to sql_standard then a leading
sign is considered to apply to all fields (but only if no additional signs appear). Otherwise the traditional
PostgreSQL interpretation is used. To avoid ambiguity, it’s recommended to attach an explicit sign to each
field if any field is negative.

Internally interval values are stored as months, days, and seconds. This is done because the number
of days in a month varies, and a day can have 23 or 25 hours if a daylight savings time adjustment is
involved. The months and days fields are integers while the seconds field can store fractions. Because
intervals are usually created from constant strings or t imestamp subtraction, this storage method works

126

Chapter 8. Data Types

well in most cases. Functions justify_days and justify_hours are available for adjusting days and
hours that overflow their normal ranges.

In the verbose input format, and in some fields of the more compact input formats, field values can have
fractional parts; for example * 1.5 week’ or*01:02:03.45’. Such input is converted to the appropriate
number of months, days, and seconds for storage. When this would result in a fractional number of months
or days, the fraction is added to the lower-order fields using the conversion factors 1 month = 30 days and
1 day = 24 hours. For example, ' 1.5 month’ becomes 1 month and 15 days. Only seconds will ever be
shown as fractional on output.

Table 8-17 shows some examples of valid interval input.

Table 8-17. Interval Input

Example Description

1-2 SQL standard format: 1 year 2 months

3 4:05:06 SQL standard format: 3 days 4 hours 5 minutes 6
seconds

1 year 2 months 3 days 4 hours 5 minutes 6 Traditional Postgres format: 1 year 2 months 3

seconds days 4 hours 5 minutes 6 seconds

P1Y2M3DT4H5M6S ISO 8601 “format with designators”: same
meaning as above

P0001-02-03T04:05:06 ISO 8601 “alternative format”: same meaning as
above

8.5.5. Interval Output

The output format of the interval type can be set to one of the four styles sql_standard, postgres,
postgres_verbose, Or iso_8601, using the command SET intervalstyle. The default is the
postgres format. Table 8-18 shows examples of each output style.

The sql_standard style produces output that conforms to the SQL standard’s specification for interval
literal strings, if the interval value meets the standard’s restrictions (either year-month only or day-time
only, with no mixing of positive and negative components). Otherwise the output looks like a standard
year-month literal string followed by a day-time literal string, with explicit signs added to disambiguate
mixed-sign intervals.

The output of the postgres style matches the output of PostgreSQL releases prior to 8.4 when the
DateStyle parameter was set to IS0.

The output of the postgres_verbose style matches the output of PostgreSQL releases prior to 8.4 when
the DateStyle parameter was set to non-ISO output.

The output of the iso_8601 style matches the “format with designators” described in section 4.4.3.2 of
the ISO 8601 standard.

Table 8-18. Interval Output Style Examples

Style Specification | Year-Month Interval |Day-Time Interval Mixed Interval

127

Chapter 8. Data Types

Style Specification

Year-Month Interval

Day-Time Interval

Mixed Interval

sgl_standard

1-2

3 4:05:06

-1-2 +3 -4:05:06

postgres

1 year 2 mons

3 days 04:05:06

-1 year -2 mons +3 days
-04:05:06

postgres_verbose

@ 1 year 2 mons

@ 3 days 4 hours 5 mins
6 secs

@ 1 year 2 mons -3
days 4 hours 5 mins 6
secs ago

iso_8601

P1Y2M

P3DT4H5M6S

P-1Y-2M3DT-4H-5M-
6S

8.5.6. Internals

PostgreSQL uses Julian dates for all date/time calculations. This has the useful property of correctly
calculating dates from 4713 BC to far into the future, using the assumption that the length of the year is

365.2425 days.

Date conventions before the 19th century make for interesting reading, but are not consistent enough to
warrant coding into a date/time handler.

8.6. Boolean Type

PostgreSQL provides the standard SQL type boolean; see Table 8-19. The boolean type can have one
of only two states: “true” or “false”. A third state, “unknown”, is represented by the SQL null value.

Table 8-19. Boolean Data Type

Name

Storage Size

Description

boolean

1 byte

state of true or false

Valid literal values for the “true” state are:

TRUE
!t!
"true’
!y!
ryesl
!Onl
Il!

For the “false” state, the following values can be used:

FALSE
Vf!

128

Chapter 8. Data Types

"false’

"no’
"off’
ror

Leading or trailing whitespace is ignored, and case does not matter. The key words TRUE and FALSE are
the preferred (SQL-compliant) usage.

Example 8-2 shows that boolean values are output using the letters t and £.

Example 8-2. Using the boolean type

CREATE TABLE testl (a boolean, b text);
INSERT INTO testl VALUES (TRUE, ’sic est’);
INSERT INTO testl VALUES (FALSE, ’'non est’);
SELECT x= FROM testl;

8.7. Enumerated Types

Enumerated (enum) types are data types that comprise a static, ordered set of values. They are equivalent
to the enum types supported in a number of programming languages. An example of an enum type might
be the days of the week, or a set of status values for a piece of data.

8.7.1. Declaration of Enumerated Types

Enum types are created using the CREATE TYPE command, for example:

CREATE TYPE mood AS ENUM (’sad’, ’ok’, ’'happy’);

Once created, the enum type can be used in table and function definitions much like any other type:

CREATE TYPE mood AS ENUM (’sad’, ’'ok’, ’happy’);
CREATE TABLE person (
name text,
current_mood mood
)
INSERT INTO person VALUES (’Moe’, ’happy’);
SELECT x FROM person WHERE current_mood = ’"happy’;
name | current_mood
______ T,

129

Chapter 8. Data Types

Moe | happy
(1 row)

8.7.2. Ordering

The ordering of the values in an enum type is the order in which the values were listed when the type was
created. All standard comparison operators and related aggregate functions are supported for enums. For
example:

INSERT INTO person VALUES (’Larry’, ’'sad’);
INSERT INTO person VALUES (’Curly’, ’ok’);
SELECT x= FROM person WHERE current_mood > ’'sad’;

name | current_mood
_______ o
Moe | happy

Curly | ok

(2 rows)

SELECT x= FROM person WHERE current_mood > ’‘sad’ ORDER BY current_mood;

name current_mood

|
_______ o
Curly | ok
Moe | happy
(2 rows)

SELECT name

FROM person

WHERE current_mood = (SELECT MIN (current_mood) FROM person);
name

8.7.3. Type Safety

Each enumerated data type is separate and cannot be compared with other enumerated types. See this
example:

CREATE TYPE happiness AS ENUM (’'happy’, ’'very happy’, ’ecstatic’);
CREATE TABLE holidays (

num_weeks integer,

happiness happiness
)i
INSERT INTO holidays (num_weeks, happiness) VALUES (4, ’'happy’);
INSERT INTO holidays (num_weeks, happiness) VALUES (6, ’'very happy’);
INSERT INTO holidays (num_weeks, happiness) VALUES (8, ’'ecstatic’);

130

Chapter 8. Data Types

INSERT INTO holidays (num_weeks, happiness) VALUES (2, ’'sad’);

ERROR: invalid input value for enum happiness: "sad"

SELECT person.name, holidays.num_weeks FROM person, holidays
WHERE person.current_mood = holidays.happiness;

ERROR: operator does not exist: mood = happiness

If you really need to do something like that, you can either write a custom operator or add explicit casts
to your query:

SELECT person.name, holidays.num_weeks FROM person, holidays
WHERE person.current_mood::text = holidays.happiness::text;
name | num_weeks

8.7.4. Implementation Details

An enum value occupies four bytes on disk. The length of an enum value’s textual label is limited by the
NAMEDATALEN setting compiled into PostgreSQL; in standard builds this means at most 63 bytes.

Enum labels are case sensitive, so " happy’ is not the same as ' HAPPY’. White space in the labels is
significant too.

The translations from internal enum values to textual labels are kept in the system catalog pg_enum.
Querying this catalog directly can be useful.

8.8. Geometric Types

Geometric data types represent two-dimensional spatial objects. Table 8-20 shows the geometric types
available in PostgreSQL. The most fundamental type, the point, forms the basis for all of the other types.

Table 8-20. Geometric Types

Name Storage Size Representation Description

point 16 bytes Point on a plane x,y)

line 32 bytes Infinite line (not fully ((x1,y1),(x2,y2))
implemented)

lseg 32 bytes Finite line segment ((x1,y1),(x2,y2))

box 32 bytes Rectangular box ((x1,y1),(x2,y2))

path 16+16n bytes Closed path (similar to | ((x1,y1),...)
polygon)

131

Chapter 8. Data Types

Name Storage Size Representation Description
path 16+16n bytes Open path [(x1,y1),...]
polygon 40+16n bytes Polygon (similar to (xLyD),...)
closed path)
circle 24 bytes Circle <(x,y),r> (center point
and radius)

A rich set of functions and operators is available to perform various geometric operations such as scaling,
translation, rotation, and determining intersections. They are explained in Section 9.11.

8.8.1. Points

Points are the fundamental two-dimensional building block for geometric types. Values of type point are
specified using either of the following syntaxes:

(x, yv)
X 7 Y

where x and y are the respective coordinates, as floating-point numbers.

Points are output using the first syntax.

8.8.2. Line Segments

Line segments (1seg) are represented by pairs of points. Values of type 1seg are specified using any of
the following syntaxes:

[(x1 , y1) , (x2, y2)]
((x1, y1) , (x2, y2))
(x1, y1) , (x2, y2)
x1 , vyl , x2 , y2

where (x1,y1) and (x2, y2) are the end points of the line segment.

Line segments are output using the first syntax.

8.8.3. Boxes

Boxes are represented by pairs of points that are opposite corners of the box. Values of type box are
specified using any of the following syntaxes:

((x1, y1), (x2, y2))
(Xllyl)/(X21y2)

x1 , vyl , x2 , y2

where (x1,y1) and (x2, y2) are any two opposite corners of the box.

Boxes are output using the second syntax.

132

Chapter 8. Data Types

Any two opposite corners can be supplied on input, but the values will be reordered as needed to store the
upper right and lower left corners, in that order.

8.8.4. Paths

Paths are represented by lists of connected points. Paths can be open, where the first and last points in the
list are considered not connected, or closed, where the first and last points are considered connected.

Values of type path are specified using any of the following syntaxes:

[(x1 , y1) , «.. , (xn , yn)]
((x1, y1) , «.. , (xn, yn))
(x1 , y1) , .. , (xn , yn)

(x1 , yl P xn , yn)
x1 , vyl PR xn , yn

where the points are the end points of the line segments comprising the path. Square brackets ([1) indicate
an open path, while parentheses (()) indicate a closed path. When the outermost parentheses are omitted,
as in the third through fifth syntaxes, a closed path is assumed.

Paths are output using the first or second syntax, as appropriate.

8.8.5. Polygons

Polygons are represented by lists of points (the vertexes of the polygon). Polygons are very similar to
closed paths, but are stored differently and have their own set of support routines.

Values of type polygon are specified using any of the following syntaxes:

((x1, y1) , «.. , (xn , yn))
(x1, v1i) , «.. , (xn , yn)
(x1 , yl ;e xn , yn)
x1 , yl r ese 4 xn , yn

where the points are the end points of the line segments comprising the boundary of the polygon.

Polygons are output using the first syntax.

8.8.6. Circles

Circles are represented by a center point and radius. Values of type circle are specified using any of the
following syntaxes:

>
)

< (x , vy r
((x, vyv), r
(x, v), r

X,y r

where (x, y) is the center point and r is the radius of the circle.

Circles are output using the first syntax.

133

Chapter 8. Data Types

8.9. Network Address Types

PostgreSQL offers data types to store IPv4, IPv6, and MAC addresses, as shown in Table 8-21. It is better
to use these types instead of plain text types to store network addresses, because these types offer input
error checking and specialized operators and functions (see Section 9.12).

Table 8-21. Network Address Types

Name Storage Size Description

cidr 7 or 19 bytes IPv4 and IPv6 networks

inet 7 or 19 bytes IPv4 and IPv6 hosts and
networks

macaddr 6 bytes MAC addresses

When sorting inet or cidr data types, IPv4 addresses will always sort before IPv6 addresses, including
IPv4 addresses encapsulated or mapped to IPv6 addresses, such as ::10.2.3.4 or ::ffff:10.4.3.2.

8.9.1. inet

The inet type holds an IPv4 or IPv6 host address, and optionally its subnet, all in one field. The subnet
is represented by the number of network address bits present in the host address (the “netmask”™). If the
netmask is 32 and the address is IPv4, then the value does not indicate a subnet, only a single host. In
IPv6, the address length is 128 bits, so 128 bits specify a unique host address. Note that if you want to
accept only networks, you should use the cidr type rather than inet.

The input format for this type is address/y where address is an IPv4 or IPv6 address and y is the
number of bits in the netmask. If the /y portion is missing, the netmask is 32 for IPv4 and 128 for IPv6,
so the value represents just a single host. On display, the /y portion is suppressed if the netmask specifies
a single host.

8.9.2. cidr

The cidr type holds an IPv4 or IPv6 network specification. Input and output formats follow Classless
Internet Domain Routing conventions. The format for specifying networks is address/y where address
is the network represented as an IPv4 or IPv6 address, and y is the number of bits in the netmask. If y
is omitted, it is calculated using assumptions from the older classful network numbering system, except
it will be at least large enough to include all of the octets written in the input. It is an error to specify a
network address that has bits set to the right of the specified netmask.

Table 8-22 shows some examples.

Table 8-22. cidr Type Input Examples

cidr Input cidr Output abbrev (cidr)
192.168.100.128/25 192.168.100.128/25 192.168.100.128/25
192.168/24 192.168.0.0/24 192.168.0/24

134

Chapter 8. Data Types

cidr Input cidr Output abbrev (cidr)
192.168/25 192.168.0.0/25 192.168.0.0/25
192.168.1 192.168.1.0/24 192.168.1/24
192.168 192.168.0.0/24 192.168.0/24
128.1 128.1.0.0/16 128.1/16

128 128.0.0.0/16 128.0/16
128.1.2 128.1.2.0/24 128.1.2/24
10.1.2 10.1.2.0/24 10.1.2/24
10.1 10.1.0.0/16 10.1/16

10 10.0.0.0/8 10/8
10.1.2.3/32 10.1.2.3/32 10.1.2.3/32

2001:418:3:ba::/64

2001:4£8:3:ba::/64

2001:4f8:3:ba::/64

2001:418:3:ba:2e0:811f:fe22:d1f1

12801:418:3:ba:2e0:811f:fe22:d1f1

12801:418:3:ba:2e0:811f:fe22:d1f1

:offff:1.2.3.0/120

=ffff:1.2.3.0/120

=ffff:1.2.3/120

offff:1.2.3.0/128

=ffff:1.2.3.0/128

=ffff:1.2.3.0/128

8.9.3. inet VS. cidr

The essential difference between inet and cidr data types is that inet accepts values with nonzero bits
to the right of the netmask, whereas cidr does not.

Tip: If you do not like the output format for inet or cidr values, try the functions nost, text, and

abbrev.

8.9.4. macaddr

The macaddr type stores MAC addresses, known for example from Ethernet card hardware addresses
(although MAC addresses are used for other purposes as well). Input is accepted in the following formats:

708:00:2b:01:02:03"
"08-00-2b-01-02-03"
708002b:010203"
708002b-010203"
70800.2b01.0203"
708002b010203"

These examples would all specify the same address. Upper and lower case is accepted for the digits a
through £. Output is always in the first of the forms shown.

135

Chapter 8. Data Types

IEEE Std 802-2001 specifies the second shown form (with hyphens) as the canonical form for MAC
addresses, and specifies the first form (with colons) as the bit-reversed notation, so that 08-00-2b-01-02-
03 =01:00:4D:08:04:0C. This convention is widely ignored nowadays, and it is only relevant for obsolete
network protocols (such as Token Ring). PostgreSQL makes no provisions for bit reversal, and all accepted
formats use the canonical LSB order.

The remaining four input formats are not part of any standard.

8.10. Bit String Types

Bit strings are strings of 1’s and 0’s. They can be used to store or visualize bit masks. There are two SQL
bit types: bit (n) and bit varying (n), where n is a positive integer.

bit type data must match the length n exactly; it is an error to attempt to store shorter or longer bit
strings. bit varying data is of variable length up to the maximum length n; longer strings will be
rejected. Writing bit without a length is equivalent to bit (1), while bit varying without a length
specification means unlimited length.

Note: If one explicitly casts a bit-string value to bit (n), it will be truncated or zero-padded on the right
to be exactly n bits, without raising an error. Similarly, if one explicitly casts a bit-string value to bit
varying (n), it will be truncated on the right if it is more than n bits.

Refer to Section 4.1.2.5 for information about the syntax of bit string constants. Bit-logical operators and
string manipulation functions are available; see Section 9.6.

Example 8-3. Using the bit string types

CREATE TABLE test (a BIT(3), b BIT VARYING(5));
INSERT INTO test VALUES (B’101’, B’00");

INSERT INTO test VALUES (B’10’, B’"1017);

ERROR: Dbit string length 2 does not match type bit (3)
INSERT INTO test VALUES (B’10’::bit(3), B’101");
SELECT * FROM test;

a | b
_____ b
101 | 00
100 | 101

A bit string value requires 1 byte for each group of 8 bits, plus 5 or 8 bytes overhead depending on the
length of the string (but long values may be compressed or moved out-of-line, as explained in Section 8.3
for character strings).

136

Chapter 8. Data Types

8.11. Text Search Types

PostgreSQL provides two data types that are designed to support full text search, which is the activity
of searching through a collection of natural-language documents to locate those that best match a qguery.
The tsvector type represents a document in a form optimized for text search; the t squery type simi-
larly represents a text query. Chapter 12 provides a detailed explanation of this facility, and Section 9.13
summarizes the related functions and operators.

8.11.1. tsvector

A tsvector value is a sorted list of distinct lexemes, which are words that have been normalized to
merge different variants of the same word (see Chapter 12 for details). Sorting and duplicate-elimination
are done automatically during input, as shown in this example:

SELECT "a fat cat sat on a mat and ate a fat rat’::tsvector;
tsvector

To represent lexemes containing whitespace or punctuation, surround them with quotes:

SELECT Sthe lexeme ' ’ contains spaces$$::tsvector;
tsvector
! " ’contains’ ’lexeme’ ’spaces’ ’'the’

(We use dollar-quoted string literals in this example and the next one to avoid the confusion of having to
double quote marks within the literals.) Embedded quotes and backslashes must be doubled:

SELECT $$the lexeme ’Joe”s’ contains a quote$$::tsvector;
tsvector

s’ ’"a’ ’'contains’ ’lexeme’ ’'quote’ ’‘the’

Optionally, integer positions can be attached to lexemes:

SELECT "a:1 fat:2 cat:3 sat:4 on:5 a:6 mat:7 and:8 ate:9 a:10 fat:11 rat:12’::tsvector;
tsvector

"a’:1,6,10 "and’ :8 "ate’:9 'cat’:3 ’'fat’:2,11 "mat’:7 ’'on’:5 ’'rat’:12 ’'sat’:4

A position normally indicates the source word’s location in the document. Positional information can be
used for proximity ranking. Position values can range from 1 to 16383; larger numbers are silently set to
16383. Duplicate positions for the same lexeme are discarded.

Lexemes that have positions can further be labeled with a weight, which can be A, B, C, or D. D is the
default and hence is not shown on output:

SELECT "a:1A fat:2B,4C cat:5D’::tsvector;
tsvector

"a’ :1A ’'cat’:5 ’"fat’ :2B,4C

137

Chapter 8. Data Types

Weights are typically used to reflect document structure, for example by marking title words differently
from body words. Text search ranking functions can assign different priorities to the different weight
markers.

It is important to understand that the t svector type itself does not perform any normalization; it assumes
the words it is given are normalized appropriately for the application. For example,

select ’'The Fat Rats’::tsvector;
tsvector

"Fat’ ’'Rats’ ’'The’

For most English-text-searching applications the above words would be considered non-normalized, but
tsvector doesn’t care. Raw document text should usually be passed through to_tsvector to normalize
the words appropriately for searching:

SELECT to_tsvector (’english’, ’'The Fat Rats’);
to_tsvector

Again, see Chapter 12 for more detail.

8.11.2. tsquery

A tsquery value stores lexemes that are to be searched for, and combines them honoring the Boolean
operators & (AND), | (OR), and ! (NOT). Parentheses can be used to enforce grouping of the operators:

SELECT ’"fat & rat’::tsquery;
tsquery

SELECT "fat & (rat | cat)’::tsquery;
tsquery

SELECT "fat & rat & ! cat’::tsquery;
tsquery

"fat’” & ’'rat’ & !’cat’

In the absence of parentheses, ! (NOT) binds most tightly, and & (AND) binds more tightly than | (OR).

Optionally, lexemes in a t squery can be labeled with one or more weight letters, which restricts them to
match only tsvector lexemes with matching weights:

SELECT ’fat:ab & cat’::tsquery;
tsquery

"fat’ :AB & 'cat’

138

Chapter 8. Data Types

Also, lexemes in a t squery can be labeled with « to specify prefix matching:

SELECT ’super:*’::tsquery;
tsquery

This query will match any word in a t svector that begins with “super”.

Quoting rules for lexemes are the same as described previously for lexemes in tsvector; and, as with
tsvector, any required normalization of words must be done before converting to the tsquery type.
The to_tsquery function is convenient for performing such normalization:

SELECT to_tsquery(’'Fat:ab & Cats’);
to_tsquery

8.12. UUID Type

The data type uuid stores Universally Unique Identifiers (UUID) as defined by RFC 4122, ISO/IEC
9834-8:2005, and related standards. (Some systems refer to this data type as a globally unique identifier,
or GUID, instead.) This identifier is a 128-bit quantity that is generated by an algorithm chosen to make
it very unlikely that the same identifier will be generated by anyone else in the known universe using the
same algorithm. Therefore, for distributed systems, these identifiers provide a better uniqueness guarantee
than sequence generators, which are only unique within a single database.

A UUID is written as a sequence of lower-case hexadecimal digits, in several groups separated by hyphens,
specifically a group of 8 digits followed by three groups of 4 digits followed by a group of 12 digits, for a
total of 32 digits representing the 128 bits. An example of a UUID in this standard form is:

aleebc99-9c0b-4ef8-bb6d-6bbo9bd380all

PostgreSQL also accepts the following alternative forms for input: use of upper-case digits, the standard
format surrounded by braces, omitting some or all hyphens, adding a hyphen after any group of four digits.
Examples are:

AQOEEBC99-9COB-4EF8-BB6D-6BB9BD380A11
{aleebc99-9c0b-4ef8-bb6d-6bb9od380all}
aleebc999c0b4ef8bbb6d6bb9bd380all
alee-bc99-9c0b-4ef8-bbb6d-6bb9-bd38-0all
{a0eebc99-9c0b4ef8-bb6d6bb9-bd380all}

Output is always in the standard form.

PostgreSQL provides storage and comparison functions for UUIDs, but the core database does not include
any function for generating UUIDs, because no single algorithm is well suited for every application. The

139

Chapter 8. Data Types

contrib module contrib/uuid-ossp provides functions that implement several standard algorithms.
Alternatively, UUIDs could be generated by client applications or other libraries invoked through a server-
side function.

8.13. XML Type

The xm1 data type can be used to store XML data. Its advantage over storing XML data in a text field is
that it checks the input values for well-formedness, and there are support functions to perform type-safe
operations on it; see Section 9.14. Use of this data type requires the installation to have been built with

configure --with-libxml.

The xm1 type can store well-formed “documents”, as defined by the XML standard, as well as “content”
fragments, which are defined by the production XMLDecl1? content in the XML standard. Roughly, this
means that content fragments can have more than one top-level element or character node. The expression
xmlvalue IS DOCUMENT can be used to evaluate whether a particular xm1 value is a full document or
only a content fragment.

8.13.1. Creating XML Values

To produce a value of type xm1 from character data, use the function xmlparse:
XMLPARSE ({ DOCUMENT | CONTENT } value)
Examples:

XMLPARSE (DOCUMENT ’<?xml version="1.0"?><book><title>Manual</title><chapter>...</chapter><
XMLPARSE (CONTENT ’abc<foo>bar</foo><bar>foo</bar>")

While this is the only way to convert character strings into XML values according to the SQL standard,
the PostgreSQL-specific syntaxes:

xml ’<foo>bar</foo>’
" <foo>bar</foo>’::xml
can also be used.

The xm1 type does not validate input values against a document type declaration (DTD), even when the
input value specifies a DTD. There is also currently no built-in support for validating against other XML
schema languages such as XML Schema.

The inverse operation, producing a character string value from xm1, uses the function xmlserialize:
XMLSERIALIZE ({ DOCUMENT | CONTENT } value AS type)

typecanbe character, character varying,or text (or an alias for one of those). Again, according
to the SQL standard, this is the only way to convert between type xm1 and character types, but PostgreSQL
also allows you to simply cast the value.

When a character string value is cast to or from type xml without going through XMLPARSE or
XMLSERIALIZE, respectively, the choice of DOCUMENT versus CONTENT is determined by the “XML
option” session configuration parameter, which can be set using the standard command:

140

Chapter 8. Data Types

SET XML OPTION { DOCUMENT | CONTENT };

or the more PostgreSQL-like syntax

SET xmloption TO { DOCUMENT | CONTENT };

The default is CONTENT, so all forms of XML data are allowed.

Note: With the default XML option setting, you cannot directly cast character strings to type xm1 if
they contain a document type declaration, because the definition of XML content fragment does not
accept them. If you need to do that, either use xuLpaRSE or change the XML option.

8.13.2. Encoding Handling

Care must be taken when dealing with multiple character encodings on the client, server, and in the XML
data passed through them. When using the text mode to pass queries to the server and query results to the
client (which is the normal mode), PostgreSQL converts all character data passed between the client and
the server and vice versa to the character encoding of the respective end; see Section 22.2. This includes
string representations of XML values, such as in the above examples. This would ordinarily mean that
encoding declarations contained in XML data can become invalid as the character data is converted to
other encodings while travelling between client and server, because the embedded encoding declaration
is not changed. To cope with this behavior, encoding declarations contained in character strings presented
for input to the xm1 type are ignored, and content is assumed to be in the current server encoding. Conse-
quently, for correct processing, character strings of XML data must be sent from the client in the current
client encoding. It is the responsibility of the client to either convert documents to the current client en-
coding before sending them to the server, or to adjust the client encoding appropriately. On output, values
of type xm1 will not have an encoding declaration, and clients should assume all data is in the current
client encoding.

When using binary mode to pass query parameters to the server and query results back to the client, no
character set conversion is performed, so the situation is different. In this case, an encoding declaration in
the XML data will be observed, and if it is absent, the data will be assumed to be in UTF-8 (as required
by the XML standard; note that PostgreSQL does not support UTF-16). On output, data will have an
encoding declaration specifying the client encoding, unless the client encoding is UTF-8, in which case it
will be omitted.

Needless to say, processing XML data with PostgreSQL will be less error-prone and more efficient if the
XML data encoding, client encoding, and server encoding are the same. Since XML data is internally
processed in UTF-8, computations will be most efficient if the server encoding is also UTF-8.

Caution

Some XML-related functions may not work at all on non-ASCII data when the server
encoding is not UTF-8. This is known to be an issue for xpath () in particular.

141

Chapter 8. Data Types

8.13.3. Accessing XML Values

The xm1 data type is unusual in that it does not provide any comparison operators. This is because there
is no well-defined and universally useful comparison algorithm for XML data. One consequence of this
is that you cannot retrieve rows by comparing an xm1 column against a search value. XML values should
therefore typically be accompanied by a separate key field such as an ID. An alternative solution for com-
paring XML values is to convert them to character strings first, but note that character string comparison
has little to do with a useful XML comparison method.

Since there are no comparison operators for the xm1 data type, it is not possible to create an index directly
on a column of this type. If speedy searches in XML data are desired, possible workarounds include
casting the expression to a character string type and indexing that, or indexing an XPath expression. Of
course, the actual query would have to be adjusted to search by the indexed expression.

The text-search functionality in PostgreSQL can also be used to speed up full-document searches of XML
data. The necessary preprocessing support is, however, not yet available in the PostgreSQL distribution.

8.14. Arrays

PostgreSQL allows columns of a table to be defined as variable-length multidimensional arrays. Arrays
of any built-in or user-defined base type, enum type, or composite type can be created. Arrays of domains
are not yet supported.

8.14.1. Declaration of Array Types

To illustrate the use of array types, we create this table:

CREATE TABLE sal_emp (
name text,
pay_by_qgquarter integer|[],
schedule text[][]
)

As shown, an array data type is named by appending square brackets ([]) to the data type name of the
array elements. The above command will create a table named sal_emp with a column of type text
(name), a one-dimensional array of type integer (pay_by_quarter), which represents the employee’s
salary by quarter, and a two-dimensional array of text (schedule), which represents the employee’s
weekly schedule.

The syntax for CREATE TABLE allows the exact size of arrays to be specified, for example:

CREATE TABLE tictactoe (
squares integer[3][3]

)i

However, the current implementation ignores any supplied array size limits, i.e., the behavior is the same
as for arrays of unspecified length.

142

Chapter 8. Data Types

The current implementation does not enforce the declared number of dimensions either. Arrays of a par-
ticular element type are all considered to be of the same type, regardless of size or number of dimensions.
So, declaring the array size or number of dimensions in CREATE TABLE is simply documentation; it does
not affect run-time behavior.

An alternative syntax, which conforms to the SQL standard by using the keyword ARRAY, can be used for
one-dimensional arrays. pay_by_quarter could have been defined as:

pay_by_qgquarter integer ARRAY[4],
Or, if no array size is to be specified:

pay_by_quarter integer ARRAY,

As before, however, PostgreSQL does not enforce the size restriction in any case.

8.14.2. Array Value Input

To write an array value as a literal constant, enclose the element values within curly braces and separate
them by commas. (If you know C, this is not unlike the C syntax for initializing structures.) You can put
double quotes around any element value, and must do so if it contains commas or curly braces. (More
details appear below.) Thus, the general format of an array constant is the following:

"{ vall delim val2 delim ... }'

where delimis the delimiter character for the type, as recorded in its pg_type entry. Among the standard
data types provided in the PostgreSQL distribution, all use a comma (,), except for type box which uses
a semicolon (;). Each val is either a constant of the array element type, or a subarray. An example of an
array constant is:

"{{1,2,3},{4,5,6},{7,8,9}}’

This constant is a two-dimensional, 3-by-3 array consisting of three subarrays of integers.

To set an element of an array constant to NULL, write NULL for the element value. (Any upper- or lower-
case variant of NULL will do.) If you want an actual string value “NULL”, you must put double quotes
around it.

(These kinds of array constants are actually only a special case of the generic type constants discussed
in Section 4.1.2.7. The constant is initially treated as a string and passed to the array input conversion
routine. An explicit type specification might be necessary.)

Now we can show some INSERT statements:

INSERT INTO sal_emp
VALUES (’'Bill’,
{10000, 10000, 10000, 10000}",
"{{"meeting", "lunch"}, {"training", "presentation"}}’);

INSERT INTO sal_emp
VALUES (’Carol’,
{20000, 25000, 25000, 25000}",
"{{"breakfast", "consulting"}, {"meeting", "lunch"}}’);

143

Chapter 8. Data Types

The result of the previous two inserts looks like this:

SELECT x= FROM sal_emp;

name | pay_by_qguarter | schedule

_______ TS
Bill | {10000,10000,10000,10000} | {{meeting,lunch}, {training,presentation}}
Carol | {20000,25000,25000,25000} | {{breakfast,consulting}, {meeting, lunch}}
(2 rows)

Multidimensional arrays must have matching extents for each dimension. A mismatch causes an error, for
example:

INSERT INTO sal_emp
VALUES (’Bill’,
{10000, 10000, 10000, 10000}",
"{{"meeting", "lunch"}, {"meeting"}}’);
ERROR: multidimensional arrays must have array expressions with matching dimensions

The ARRAY constructor syntax can also be used:

INSERT INTO sal_emp
VALUES (’'Bill’,
ARRAY[10000, 10000, 10000, 100007,
ARRAY [['meeting’, ’lunch’], [’'training’, ’'presentation’]]);

INSERT INTO sal_emp
VALUES (’Carol’,
ARRAY[20000, 25000, 25000, 2500017,
ARRAY [["breakfast’, ’consulting’], [’'meeting’, ’'lunch’]11]);

Notice that the array elements are ordinary SQL constants or expressions; for instance, string literals are
single quoted, instead of double quoted as they would be in an array literal. The ARRAY constructor syntax
is discussed in more detail in Section 4.2.11.

8.14.3. Accessing Arrays

Now, we can run some queries on the table. First, we show how to access a single element of an array.
This query retrieves the names of the employees whose pay changed in the second quarter:

SELECT name FROM sal_emp WHERE pay_by_quarter[l] <> pay_by_qguarter[2];

144

Chapter 8. Data Types

The array subscript numbers are written within square brackets. By default PostgreSQL uses a one-based
numbering convention for arrays, that is, an array of n elements starts with array[1] and ends with
array([n].

This query retrieves the third quarter pay of all employees:
SELECT pay_by_quarter[3] FROM sal_emp;

pay_by_quarter

10000
25000
(2 rows)

We can also access arbitrary rectangular slices of an array, or subarrays. An array slice is denoted by
writing Iower-bound: upper-bound for one or more array dimensions. For example, this query retrieves
the first item on Bill’s schedule for the first two days of the week:

SELECT schedule[1:2][1:1] FROM sal_emp WHERE name = ’'Bill’;

schedule

{{meeting}, {training}}
(1 row)

If any dimension is written as a slice, i.e., contains a colon, then all dimensions are treated as slices. Any
dimension that has only a single number (no colon) is treated as being from 1 to the number specified. For
example, [2] is treated as [1:2], as in this example:

SELECT schedule[1l:2][2] FROM sal_emp WHERE name = ’'Bill’;

schedule

{{meeting, lunch}, {training, presentation}}
(1 row)

To avoid confusion with the non-slice case, it’s best to use slice syntax for all dimensions, e.g.,
[1:2][1:1],n0t [2][1:1].

An array subscript expression will return null if either the array itself or any of the subscript expressions
are null. Also, null is returned if a subscript is outside the array bounds (this case does not raise an error).
For example, if schedule currently has the dimensions [1:3] [1:2] then referencing schedule[3] [3]
yields NULL. Similarly, an array reference with the wrong number of subscripts yields a null rather than
an error.

An array slice expression likewise yields null if the array itself or any of the subscript expressions are
null. However, in other cases such as selecting an array slice that is completely outside the current array
bounds, a slice expression yields an empty (zero-dimensional) array instead of null. (This does not match
non-slice behavior and is done for historical reasons.) If the requested slice partially overlaps the array
bounds, then it is silently reduced to just the overlapping region instead of returning null.

The current dimensions of any array value can be retrieved with the array_dims function:

145

Chapter 8. Data Types
SELECT array_dims (schedule) FROM sal_emp WHERE name = ’'Carol’;

array_dims

[1:2][1:2]
(1 row)

array_dims produces a text result, which is convenient for people to read but perhaps inconvenient
for programs. Dimensions can also be retrieved with array_upper and array_lower, which return the
upper and lower bound of a specified array dimension, respectively:

SELECT array_upper (schedule, 1) FROM sal_emp WHERE name = ’'Carol’;

array_upper

(1 row)
array_length will return the length of a specified array dimension:
SELECT array_length(schedule, 1) FROM sal_emp WHERE name = ’Carol’;

array_length

8.14.4. Modifying Arrays

An array value can be replaced completely:

UPDATE sal_emp SET pay_by_quarter = ' {25000,25000,27000,27000}"
WHERE name = ’'Carol’;

or using the ARRAY expression syntax:

UPDATE sal_emp SET pay_by_quarter = ARRAY[25000,25000,27000,27000]
WHERE name = ’'Carol’;

An array can also be updated at a single element:

UPDATE sal_emp SET pay_by_quarter[4] = 15000
WHERE name = ’'Bill’;

or updated in a slice:

UPDATE sal_emp SET pay_by_quarter[1l:2] = ’{27000,27000}"
WHERE name = ’'Carol’;

146

Chapter 8. Data Types

A stored array value can be enlarged by assigning to elements not already present. Any positions between
those previously present and the newly assigned elements will be filled with nulls. For example, if array
myarray currently has 4 elements, it will have six elements after an update that assigns to myarray[6];
myarray [5] will contain null. Currently, enlargement in this fashion is only allowed for one-dimensional
arrays, not multidimensional arrays.

Subscripted assignment allows creation of arrays that do not use one-based subscripts. For example one
might assign to myarray[-2:7] to create an array with subscript values from -2 to 7.

New array values can also be constructed using the concatenation operator, | | :

SELECT ARRAY[1,2] || ARRAY[3,4]1;
?column?

{1,2,3,4}
(1 row)

SELECT ARRAY[5,6] || ARRAY([[1,2]1,1[3,4]11;
?column?

{{5,6},{1,2},1{3,4}}
(1 row)

The concatenation operator allows a single element to be pushed onto the beginning or end of a one-
dimensional array. It also accepts two N-dimensional arrays, or an N-dimensional and an N+1-dimensional
array.

When a single element is pushed onto either the beginning or end of a one-dimensional array, the result is
an array with the same lower bound subscript as the array operand. For example:

SELECT array_dims (1l || "[0:1]={2,3}" ::int[]);
array_dims

[0:2]
(1 row)

SELECT array_dims (ARRAY[1,2] || 3);
array_dims

[1:3]
(1 row)

When two arrays with an equal number of dimensions are concatenated, the result retains the lower bound
subscript of the left-hand operand’s outer dimension. The result is an array comprising every element of
the left-hand operand followed by every element of the right-hand operand. For example:

SELECT array_dims (ARRAY[1,2] || ARRAY[3,4,5]);
array_dims

[1:5]
(1 row)

147

Chapter 8. Data Types

SELECT array_dims (ARRAY[[1,2],[3,4]1] || ARRAY[[5,6],[7,81,19,011);
array_dims

[1:5][1:2]
(1 row)

When an v-dimensional array is pushed onto the beginning or end of an N+1-dimensional array, the result
is analogous to the element-array case above. Each N-dimensional sub-array is essentially an element of
the n+1-dimensional array’s outer dimension. For example:

SELECT array_dims (ARRAY[1,2] || ARRAY[[3,4]1,1[5,611);
array_dims

[1:3][1:2]
(1 row)

An array can also be constructed by using the functions array_prepend, array_append,
or array_cat. The first two only support one-dimensional arrays, but array_cat supports
multidimensional arrays. Note that the concatenation operator discussed above is preferred over direct
use of these functions. In fact, these functions primarily exist for use in implementing the concatenation
operator. However, they might be directly useful in the creation of user-defined aggregates. Some
examples:

SELECT array_prepend(l, ARRAY[2,3]);
array_prepend

{1,2,3}
(1 row)

SELECT array_append (ARRAY[1,2], 3);
array_append

{1,2,3}
(1 row)

SELECT array_cat (ARRAY[1,2], ARRAY[3,4]);
array_cat

{1,2,3,4}
(1 row)

SELECT array_cat (ARRAY[[1,2],[3,41]1, ARRAY[5,61]1);
array_cat

{{1,2},{3,4},1{5,6}}
(1 row)

SELECT array_cat (ARRAY[5,6], ARRAY[[1,2],1[3,411);

148

Chapter 8. Data Types

array_cat

{{5,6},{1,2},{3,4}}

8.14.5. Searching in Arrays

To search for a value in an array, each value must be checked. This can be done manually, if you know the
size of the array. For example:

SELECT * FROM sal_emp WHERE pay_by_quarter = 10000 OR

[1]
pay_by_qgquarter[2] = 10000 OR
pay_by_qgquarter[3] = 10000 OR
pay_by_quarter[4] = 10000;

However, this quickly becomes tedious for large arrays, and is not helpful if the size of the array is
unknown. An alternative method is described in Section 9.21. The above query could be replaced by:

SELECT x FROM sal_emp WHERE 10000 = ANY (pay_by_quarter);

In addition, you can find rows where the array has all values equal to 10000 with:

SELECT * FROM sal_emp WHERE 10000 = ALL (pay_by_dquarter);

Alternatively, the generate_subscripts function can be used. For example:

SELECT % FROM
(SELECT pay_by_quarter,
generate_subscripts (pay_by_gquarter, 1) AS s
FROM sal_emp) AS foo
WHERE pay_by_quarter[s] = 10000;

This function is described in Table 9-46.

Tip: Arrays are not sets; searching for specific array elements can be a sign of database misdesign.
Consider using a separate table with a row for each item that would be an array element. This will be
easier to search, and is likely to scale better for a large number of elements.

8.14.6. Array Input and Output Syntax

The external text representation of an array value consists of items that are interpreted according to the
I/O conversion rules for the array’s element type, plus decoration that indicates the array structure. The
decoration consists of curly braces ({ and }) around the array value plus delimiter characters between
adjacent items. The delimiter character is usually a comma (,) but can be something else: it is determined
by the typdelim setting for the array’s element type. Among the standard data types provided in the

149

Chapter 8. Data Types

PostgreSQL distribution, all use a comma, except for type box, which uses a semicolon (;). In a multidi-
mensional array, each dimension (row, plane, cube, etc.) gets its own level of curly braces, and delimiters
must be written between adjacent curly-braced entities of the same level.

The array output routine will put double quotes around element values if they are empty strings, contain
curly braces, delimiter characters, double quotes, backslashes, or white space, or match the word NULL.
Double quotes and backslashes embedded in element values will be backslash-escaped. For numeric data
types it is safe to assume that double quotes will never appear, but for textual data types one should be
prepared to cope with either the presence or absence of quotes.

By default, the lower bound index value of an array’s dimensions is set to one. To represent arrays with
other lower bounds, the array subscript ranges can be specified explicitly before writing the array contents.
This decoration consists of square brackets ([]) around each array dimension’s lower and upper bounds,
with a colon (:) delimiter character in between. The array dimension decoration is followed by an equal
sign (=). For example:

SELECT f1[1]1[-2]1[3] AS el, f1[1]1[-1]1[5] AS e2
FROM (SELECT ' [1:1]1[-2:-1]1[3:5]1={{{1,2,3},{4,5,6}}}"::int[] AS fl) AS ss;

The array output routine will include explicit dimensions in its result only when there are one or more
lower bounds different from one.

If the value written for an element is NULL (in any case variant), the element is taken to be NULL. The
presence of any quotes or backslashes disables this and allows the literal string value “NULL” to be
entered. Also, for backwards compatibility with pre-8.2 versions of PostgreSQL, the array_nulls configu-
ration parameter can be turned of £ to suppress recognition of NULL as a NULL.

As shown previously, when writing an array value you can use double quotes around any individual
array element. You must do so if the element value would otherwise confuse the array-value parser. For
example, elements containing curly braces, commas (or the data type’s delimiter character), double quotes,
backslashes, or leading or trailing whitespace must be double-quoted. Empty strings and strings matching
the word NULL must be quoted, too. To put a double quote or backslash in a quoted array element value,
use escape string syntax and precede it with a backslash. Alternatively, you can avoid quotes and use
backslash-escaping to protect all data characters that would otherwise be taken as array syntax.

You can add whitespace before a left brace or after a right brace. You can also add whitespace before or
after any individual item string. In all of these cases the whitespace will be ignored. However, whitespace
within double-quoted elements, or surrounded on both sides by non-whitespace characters of an element,
is not ignored.

Note: Remember that what you write in an SQL command will first be interpreted as a string literal,
and then as an array. This doubles the number of backslashes you need. For example, to insert a
text array value containing a backslash and a double quote, you'd need to write:

INSERT ... VALUES (E’ {"\\\\","\\""}");

The escape string processor removes one level of backslashes, so that what arrives at the array-value
parser looks like {"\\", "\""}. In turn, the strings fed to the text data type’s input routine become \

150

Chapter 8. Data Types

and " respectively. (If we were working with a data type whose input routine also treated backslashes
specially, bytea for example, we might need as many as eight backslashes in the command to get one
backslash into the stored array element.) Dollar quoting (see Section 4.1.2.4) can be used to avoid
the need to double backslashes.

Tip: The arraY constructor syntax (see Section 4.2.11) is often easier to work with than the array-
literal syntax when writing array values in SQL commands. In array, individual element values are
written the same way they would be written when not members of an array.

8.15. Composite Types

A composite type represents the structure of a row or record; it is essentially just a list of field names and
their data types. PostgreSQL allows composite types to be used in many of the same ways that simple
types can be used. For example, a column of a table can be declared to be of a composite type.

8.15.1. Declaration of Composite Types

Here are two simple examples of defining composite types:

CREATE TYPE complex AS (
r double precision,
i double precision
)i

CREATE TYPE inventory_item AS (

name text,
supplier_id integer,
price numeric

)

The syntax is comparable to CREATE TABLE, except that only field names and types can be specified; no
constraints (such as NOT NULL) can presently be included. Note that the AS keyword is essential; without
it, the system will think a different kind of CREATE TYPE command is meant, and you will get odd syntax
erTors.

Having defined the types, we can use them to create tables:
CREATE TABLE on_hand (
item inventory_item,

count integer
)

INSERT INTO on_hand VALUES (ROW (’fuzzy dice’, 42, 1.99), 1000);

or functions:

151

Chapter 8. Data Types

CREATE FUNCTION price_extension (inventory_item, integer) RETURNS numeric
AS ’'SELECT S$Sl.price x $2’ LANGUAGE SQL;

SELECT price_extension(item, 10) FROM on_hand;

Whenever you create a table, a composite type is also automatically created, with the same name as the
table, to represent the table’s row type. For example, had we said:

CREATE TABLE inventory_item (

name text,
supplier_id integer REFERENCES suppliers,
price numeric CHECK (price > 0)

)

then the same inventory_item composite type shown above would come into being as a byproduct, and
could be used just as above. Note however an important restriction of the current implementation: since
no constraints are associated with a composite type, the constraints shown in the table definition do not
apply to values of the composite type outside the table. (A partial workaround is to use domain types as
members of composite types.)

8.15.2. Composite Value Input

To write a composite value as a literal constant, enclose the field values within parentheses and separate
them by commas. You can put double quotes around any field value, and must do so if it contains commas
or parentheses. (More details appear below.) Thus, the general format of a composite constant is the
following:

'(vall , valz , ...)’
An example is:
" ("fuzzy dice",42,1.99)"

which would be a valid value of the inventory_item type defined above. To make a field be NULL,
write no characters at all in its position in the list. For example, this constant specifies a NULL third field:

" ("fuzzy dice",42,)’
If you want an empty string rather than NULL, write double quotes:
’ (nmn , 4 2 ,) ’

Here the first field is a non-NULL empty string, the third is NULL.

(These constants are actually only a special case of the generic type constants discussed in Section 4.1.2.7.
The constant is initially treated as a string and passed to the composite-type input conversion routine. An
explicit type specification might be necessary.)

152

Chapter 8. Data Types

The rROW expression syntax can also be used to construct composite values. In most cases this is consid-
erably simpler to use than the string-literal syntax since you don’t have to worry about multiple layers of
quoting. We already used this method above:

ROW (’ fuzzy dice’, 42, 1.99)
ROW (”, 42, NULL)

The ROW keyword is actually optional as long as you have more than one field in the expression, so these
can simplify to:

(" fuzzy dice’, 42, 1.99)
(”, 42, NULL)

The rROW expression syntax is discussed in more detail in Section 4.2.12.

8.15.3. Accessing Composite Types

To access a field of a composite column, one writes a dot and the field name, much like selecting a
field from a table name. In fact, it’s so much like selecting from a table name that you often have to use
parentheses to keep from confusing the parser. For example, you might try to select some subfields from
our on_hand example table with something like:

SELECT item.name FROM on_hand WHERE item.price > 9.99;

This will not work since the name item is taken to be a table name, not a column name of on_hand, per
SQL syntax rules. You must write it like this:

SELECT (item) .name FROM on_hand WHERE (item).price > 9.99;
or if you need to use the table name as well (for instance in a multitable query), like this:
SELECT (on_hand.item) .name FROM on_hand WHERE (on_hand.item) .price > 9.99;

Now the parenthesized object is correctly interpreted as a reference to the item column, and then the
subfield can be selected from it.

Similar syntactic issues apply whenever you select a field from a composite value. For instance, to select
just one field from the result of a function that returns a composite value, you’d need to write something
like:

SELECT (my_func(...)).field FROM

Without the extra parentheses, this will generate a syntax error.

8.15.4. Modifying Composite Types

Here are some examples of the proper syntax for inserting and updating composite columns. First, insert-
ing or updating a whole column:

INSERT INTO mytab (complex_col) VALUES((1.1,2.2));

153

Chapter 8. Data Types

UPDATE mytab SET complex_col = ROW(1.1,2.2) WHERE ...;

The first example omits ROW, the second uses it; we could have done it either way.

We can update an individual subfield of a composite column:
UPDATE mytab SET complex_col.r = (complex_col).r + 1 WHERE ...;

Notice here that we don’t need to (and indeed cannot) put parentheses around the column name appearing
just after SET, but we do need parentheses when referencing the same column in the expression to the
right of the equal sign.

And we can specify subfields as targets for INSERT, too:
INSERT INTO mytab (complex_col.r, complex_col.i) VALUES(l1.1, 2.2);

Had we not supplied values for all the subfields of the column, the remaining subfields would have been
filled with null values.

8.15.5. Composite Type Input and Output Syntax

The external text representation of a composite value consists of items that are interpreted according to the
I/O conversion rules for the individual field types, plus decoration that indicates the composite structure.
The decoration consists of parentheses ((and)) around the whole value, plus commas (,) between
adjacent items. Whitespace outside the parentheses is ignored, but within the parentheses it is considered
part of the field value, and might or might not be significant depending on the input conversion rules for
the field data type. For example, in:

I(42)/

the whitespace will be ignored if the field type is integer, but not if it is text.

As shown previously, when writing a composite value you can write double quotes around any individual
field value. You must do so if the field value would otherwise confuse the composite-value parser. In
particular, fields containing parentheses, commas, double quotes, or backslashes must be double-quoted.
To put a double quote or backslash in a quoted composite field value, precede it with a backslash. (Also,
a pair of double quotes within a double-quoted field value is taken to represent a double quote character,
analogously to the rules for single quotes in SQL literal strings.) Alternatively, you can avoid quoting and
use backslash-escaping to protect all data characters that would otherwise be taken as composite syntax.

A completely empty field value (no characters at all between the commas or parentheses) represents a
NULL. To write a value that is an empty string rather than NULL, write " .

The composite output routine will put double quotes around field values if they are empty strings or
contain parentheses, commas, double quotes, backslashes, or white space. (Doing so for white space is
not essential, but aids legibility.) Double quotes and backslashes embedded in field values will be doubled.

Note: Remember that what you write in an SQL command will first be interpreted as a string literal,
and then as a composite. This doubles the number of backslashes you need (assuming escape string
syntax is used). For example, to insert a text field containing a double quote and a backslash in a
composite value, you'd need to write:

154

Chapter 8. Data Types

INSERT ... VALUES (E’ ("\\"\\\\")");

The string-literal processor removes one level of backslashes, so that what arrives at the composite-
value parser looks like ("\"\\"). In turn, the string fed to the text data type’s input routine becomes
"\. (If we were working with a data type whose input routine also treated backslashes specially, bytea
for example, we might need as many as eight backslashes in the command to get one backslash into
the stored composite field.) Dollar quoting (see Section 4.1.2.4) can be used to avoid the need to
double backslashes.

Tip: The row constructor syntax is usually easier to work with than the composite-literal syntax when
writing composite values in SQL commands. In row, individual field values are written the same way
they would be written when not members of a composite.

8.16. Object Identifier Types

Object identifiers (OIDs) are used internally by PostgreSQL as primary keys for various system tables.
OIDs are not added to user-created tables, unless WITH O1IDS is specified when the table is created, or
the default_with_oids configuration variable is enabled. Type oid represents an object identifier. There
are also several alias types for oid: regproc, regprocedure, regoper, regoperator, regclass
regtype, regconfig, and regdictionary. Table 8-23 shows an overview.

The oid type is currently implemented as an unsigned four-byte integer. Therefore, it is not large enough
to provide database-wide uniqueness in large databases, or even in large individual tables. So, using a
user-created table’s OID column as a primary key is discouraged. OIDs are best used only for references
to system tables.

The oid type itself has few operations beyond comparison. It can be cast to integer, however, and then
manipulated using the standard integer operators. (Beware of possible signed-versus-unsigned confusion
if you do this.)

The OID alias types have no operations of their own except for specialized input and output routines.
These routines are able to accept and display symbolic names for system objects, rather than the raw
numeric value that type oid would use. The alias types allow simplified lookup of OID values for objects.
For example, to examine the pg_attribute rows related to a table mytable, one could write:

SELECT FROM pg_attribute WHERE attrelid = 'mytable’::regclass;
rather than:

SELECT * FROM pg_attribute
WHERE attrelid = (SELECT oid FROM pg_class WHERE relname = ’'mytable’);

While that doesn’t look all that bad by itself, it’s still oversimplified. A far more complicated sub-select
would be needed to select the right OID if there are multiple tables named mytable in different schemas.
The regclass input converter handles the table lookup according to the schema path setting, and so it

155

Chapter 8. Data Types

does the “right thing” automatically. Similarly, casting a table’s OID to regclass is handy for symbolic
display of a numeric OID.

Table 8-23. Object Identifier Types

Name References Description Value Example
oid any numeric object identifier | 564182
regproc Pg_proc function name sum
regprocedure Pg_proc function with argument | sum(int4)
types
regoper pg_operator operator name +
regoperator pg_operator operator with argument | » (integer, integer)
types or - (NONE, integer)
regclass pg_class relation name pPg_type
regtype pPg_type data type name integer
regconfig pg_ts_config text search configuration | english
regdictionary pg_ts_dict text search dictionary simple

All of the OID alias types accept schema-qualified names, and will display schema-qualified names on
output if the object would not be found in the current search path without being qualified. The regproc
and regoper alias types will only accept input names that are unique (not overloaded), so they are of
limited use; for most uses regprocedure or regoperator are more appropriate. For regoperator,
unary operators are identified by writing NONE for the unused operand.

An additional property of the OID alias types is the creation of dependencies. If a constant of
one of these types appears in a stored expression (such as a column default expression or view),
it creates a dependency on the referenced object. For example, if a column has a default expression
nextval ('my_seq’ : :regclass), PostgreSQL understands that the default expression depends on the
sequence my_seq; the system will not let the sequence be dropped without first removing the default
expression.

Another identifier type used by the system is xid, or transaction (abbreviated xact) identifier. This is the
data type of the system columns xmin and xmax. Transaction identifiers are 32-bit quantities.

A third identifier type used by the system is cid, or command identifier. This is the data type of the system
columns cmin and cmax. Command identifiers are also 32-bit quantities.

A final identifier type used by the system is tid, or tuple identifier (row identifier). This is the data type
of the system column ctid. A tuple ID is a pair (block number, tuple index within block) that identifies
the physical location of the row within its table.

(The system columns are further explained in Section 5.4.)

8.17. Pseudo-Types

The PostgreSQL type system contains a number of special-purpose entries that are collectively called

156

Chapter 8. Data Types

pseudo-types. A pseudo-type cannot be used as a column data type, but it can be used to declare a func-
tion’s argument or result type. Each of the available pseudo-types is useful in situations where a function’s
behavior does not correspond to simply taking or returning a value of a specific SQL data type. Table 8-24
lists the existing pseudo-types.

Table 8-24. Pseudo-Types

Name Description

any Indicates that a function accepts any input data
type.

anyarray Indicates that a function accepts any array data
type (see Section 35.2.5).

anyelement Indicates that a function accepts any data type (see
Section 35.2.5).

anyenum Indicates that a function accepts any enum data

type (see Section 35.2.5 and Section 8.7).

anynonarray Indicates that a function accepts any non-array
data type (see Section 35.2.5).

cstring Indicates that a function accepts or returns a
null-terminated C string.

internal Indicates that a function accepts or returns a
server-internal data type.

language_handler A procedural language call handler is declared to
return language_handler.

record Identifies a function returning an unspecified row
type.

trigger A trigger function is declared to return trigger.

void Indicates that a function returns no value.

opaque An obsolete type name that formerly served all the

above purposes.

Functions coded in C (whether built-in or dynamically loaded) can be declared to accept or return any of
these pseudo data types. It is up to the function author to ensure that the function will behave safely when
a pseudo-type is used as an argument type.

Functions coded in procedural languages can use pseudo-types only as allowed by their implementation
languages. At present the procedural languages all forbid use of a pseudo-type as argument type, and allow
only void and record as a result type (plus t rigger when the function is used as a trigger). Some also
support polymorphic functions using the types anyarray, anyelement, anyenum, and anynonarray.

The internal pseudo-type is used to declare functions that are meant only to be called internally by the
database system, and not by direct invocation in an SQL query. If a function has at least one internal-
type argument then it cannot be called from SQL. To preserve the type safety of this restriction it is
important to follow this coding rule: do not create any function that is declared to return internal unless
it has at least one internal argument.

157

Chapter 9. Functions and Operators

PostgreSQL provides a large number of functions and operators for the built-in data types. Users can also
define their own functions and operators, as described in Part V. The psql commands \df and \do can be
used to list all available functions and operators, respectively.

If you are concerned about portability then note that most of the functions and operators described in this
chapter, with the exception of the most trivial arithmetic and comparison operators and some explicitly
marked functions, are not specified by the SQL standard. Some of this extended functionality is present in
other SQL database management systems, and in many cases this functionality is compatible and consis-
tent between the various implementations. This chapter is also not exhaustive; additional functions appear
in relevant sections of the manual.

9.1. Logical Operators

The usual logical operators are available:

AND
OR
NOT

SQL uses a three-valued Boolean logic where the null value represents “unknown”. Observe the following

truth tables:
a b a AND b aORb
TRUE TRUE TRUE TRUE
TRUE FALSE FALSE TRUE
TRUE NULL NULL TRUE
FALSE FALSE FALSE FALSE
FALSE NULL FALSE NULL
NULL NULL NULL NULL
a NOT a
TRUE FALSE
FALSE TRUE
NULL NULL

The operators AND and OR are commutative, that is, you can switch the left and right operand without
affecting the result. But see Section 4.2.13 for more information about the order of evaluation of subex-
pressions.

158

Chapter 9. Functions and Operators

9.2. Comparison Operators

The usual comparison operators are available, shown in Table 9-1.

Table 9-1. Comparison Operators

Operator Description

< less than

> greater than

<= less than or equal to
>= greater than or equal to
= equal

<>or!= not equal

Note: The ' = operator is converted to <> in the parser stage. It is not possible to implement != and
<> operators that do different things.

Comparison operators are available for all relevant data types. All comparison operators are binary oper-
ators that return values of type boolean; expressions like 1 < 2 < 3 are not valid (because there is no
< operator to compare a Boolean value with 3).

In addition to the comparison operators, the special BETWEEN construct is available:
a BETWEEN x AND y

is equivalent to

a >= x AND a <= y

Notice that BETWEEN treats the endpoint values as included in the range. NOT BETWEEN does the opposite
comparison:

a NOT BETWEEN x AND y
is equivalent to
a< x OR a > y

BETWEEN SYMMETRIC is the same as BETWEEN except there is no requirement that the argument to the left
of AND be less than or equal to the argument on the right. If it is not, those two arguments are automatically
swapped, so that a nonempty range is always implied.

To check whether a value is or is not null, use the constructs:

expression IS NULL
expression 1S NOT NULL

or the equivalent, but nonstandard, constructs:

expression ISNULL

159

Chapter 9. Functions and Operators

expression NOTNULL

Do not write expression = NULL because NULL is not “equal to” NULL. (The null value represents an
unknown value, and it is not known whether two unknown values are equal.) This behavior conforms to
the SQL standard.

Tip: Some applications might expect that expression = NULL returns true if expression evaluates
to the null value. It is highly recommended that these applications be modified to comply with the
SQL standard. However, if that cannot be done the transform_null_equals configuration variable is
available. If it is enabled, PostgreSQL will convert x = NULL clauses to x IS NULL.

Note: If the expression is row-valued, then 1s NULL is true when the row expression itself is null or
when all the row’s fields are null, while s noT NULL is true when the row expression itself is non-
null and all the row’s fields are non-null. Because of this behavior, 1s nuLL and 1s NoT NULL do not
always return inverse results for row-valued expressions, i.e., a row-valued expression that contains
both NULL and non-null values will return false for both tests. This definition conforms to the SQL
standard, and is a change from the inconsistent behavior exhibited by PostgreSQL versions prior to
8.2.

Ordinary comparison operators yield null (signifying “unknown”), not true or false, when either input
is null. For example, 7 = NULL yields null. When this behavior is not suitable, use the IS [NOT]
DISTINCT FROM constructs:

expression IS DISTINCT FROM expression
expression IS NOT DISTINCT FROM expression

For non-null inputs, IS DISTINCT FROM is the same as the <> operator. However, if both inputs are
null it returns false, and if only one input is null it returns true. Similarly, IS NOT DISTINCT FROM is
identical to = for non-null inputs, but it returns true when both inputs are null, and false when only one
input is null. Thus, these constructs effectively act as though null were a normal data value, rather than
“unknown”.

Boolean values can also be tested using the constructs

expression IS TRUE
expression 1S NOT TRUE
expression 1S FALSE
expression IS NOT FALSE
expression IS UNKNOWN
expression IS NOT UNKNOWN

These will always return true or false, never a null value, even when the operand is null. A null input
is treated as the logical value “unknown”. Notice that IS UNKNOWN and IS NOT UNKNOWN are effec-
tively the same as IS NULL and IS NOT NULL, respectively, except that the input expression must be of
Boolean type.

160

Table 9-2 shows the available mathematical operators.

Table 9-2. Mathematical Operators

Chapter 9. Functions and Operators

9.3. Mathematical Functions and Operators

Mathematical operators are provided for many PostgreSQL types. For types without standard mathemati-
cal conventions (e.g., date/time types) we describe the actual behavior in subsequent sections.

Operator Description Example Result
+ addition 2 + 3 5
- subtraction 2 -3 -1
* multiplication 2 x 3 6
/ division (integer 4 / 2 2
division truncates the
result)
S modulo (remainder) 5% 4 1
0 exponentiation 2.0 ~ 3.0 8
|/ square root |/ 25.0 5
|1/ cube root [1/ 27.0 3
! factorial 5 ! 120
! factorial (prefix 15 120
operator)
@ absolute value @ -5.0 5
& bitwise AND 91 & 15 11
| bitwise OR 32 | 3 35
bitwise XOR 17 # 5 20
~ bitwise NOT ~1 -2
<< bitwise shift left 1 << 4 16
>> bitwise shift right 8 >> 2 2

The bitwise operators work only on integral data types, whereas the others are available for all numeric
data types. The bitwise operators are also available for the bit string types bit and bit varying, as
shown in Table 9-10.

Table 9-3 shows the available mathematical functions. In the table, dp indicates double precision.
Many of these functions are provided in multiple forms with different argument types. Except where
noted, any given form of a function returns the same data type as its argument. The functions working
with double precision data are mostly implemented on top of the host system’s C library; accuracy
and behavior in boundary cases can therefore vary depending on the host system.

Table 9-3. Mathematical Functions

Function

Return Type

Description

Example

Result

abs (x)

(same as input)

absolute value

abs (-17.4)

17.4

161

Chapter 9. Functions and Operators

Function Return Type Description Example Result
cbrt (dp) dp cube root cbrt (27.0) 3

ceil (dp or (same as input) smallest integer not | ceil (-42.8) -42
numeric) less than argument

ceiling(dp or (same as input) smallest integer not | ceiling (-95.3) |-95

numeric)

less than argument
(alias for ceil)

degrees (dp) dp radians to degrees |degrees (0.5) 28.647889756541
div (y numeric, x |numeric integer quotient of |div (9, 4) 2

numeric) y/x

exp (dp or (same as input) exponential exp (1.0) 2.7182818284590
numeric)

floor (dp or

(same as input)

largest integer not
greater than

floor (-42.8)

-43

48

numeric)
argument
1n(dp or (same as input) natural logarithm | 1n(2.0) 0.6931471805599
numeric)
log (dp or (same as input) base 10 logarithm |1og(100.0) 2
numeric)
log (b numeric, x |numeric logarithm to base b | log (2.0, 64.0) |6.0000000000
numeric)
mod (y, x) (same as argument | remainder of y/x mod (9, 4) 1
types)
pi() dp “m” constant pi() 3.1415926535897
power (a dp, b dp a raised to the power (9.0, 729
dp) power of b 3.0)
power (a numeric, |numeric a raised to the power (9.0, 729
b numeric) power of b 3.0)
radians (dp) dp degrees to radians | radians (45.0) 0.7853981633974
random () dp random value in random ()
the range 0.0 <= x
< 1.0
round (dp or (same as input) round to nearest round (42.4) 42
numeric) integer
round (v numeric, |numeric round to s decimal | round (42.4382, |42.44

s int)

places

2)

162

Chapter 9. Functions and Operators

Function Return Type Description Example Result
setseed (dp) void set seed for setseed (0.54823|)
subsequent
random () calls
(value between
-1.0 and 1.0,
inclusive)
sign(dp or (same as input) sign of the sign(-8.4) -1
numeric) argument (-1, 0,
+1)
sqrt (dp or (same as input) square root sqrt (2.0) 1.4142135623731
numeric)
trunc (dp or (same as input) truncate toward trunc(42.8) 42
numeric) Zero
trunc (v numeric, |numeric truncate to s trunc (42.4382, |42.43
s int) decimal places 2)
width_bucket (op |int return the bucket to | width_bucket (5.3%,
numeric, bl which operand 0.024, 10.06,
numeric, b2 would be assigned | 5)
numeric, count in an equidepth
int) histogram with
count buckets, in
the range b1l to b2
width_bucket (op |int return the bucket to | width_bucket (5.[3%,
dp, bl dp, b2 dp, which operand 0.024, 10.06,
count int) would be assigned | 5)
in an equidepth
histogram with
count buckets, in
the range b1l to b2

Finally, Table 9-4 shows the available trigonometric functions. All trigonometric functions take arguments

and return values of type double precision. Trigonometric functions arguments are expressed in radi-
ans. Inverse functions return values are expressed in radians. See unit transformation functions radians ()
and degrees () above.

Table 9-4. Trigonometric Functions

Function Description
acos (x) inverse cosine
asin(x) inverse sine
atan (x) inverse tangent

atan2 (y, x)

inverse tangent of y/x

cos (x)

cosine

cot (x)

cotangent

163

Chapter 9. Functions and Operators

Function Description
sin(x) sine
tan (x) tangent

9.4. String Functions and Operators

This section describes functions and operators for examining and manipulating string values. Strings in

this context include values of the types character, character varying, and text. Unless otherwise
noted, all of the functions listed below work on all of these types, but be wary of potential effects of
automatic space-padding when using the character type. Some functions also exist natively for the

bit-string types.

SQL defines some string functions that use key words, rather than commas, to separate arguments. De-
tails are in Table 9-5. PostgreSQL also provides versions of these functions that use the regular function
invocation syntax (see Table 9-6).

Note: Before PostgreSQL 8.3, these functions would silently accept values of several non-string data
types as well, due to the presence of implicit coercions from those data types to text. Those coer-
cions have been removed because they frequently caused surprising behaviors. However, the string
concatenation operator (| |) still accepts non-string input, so long as at least one input is of a string
type, as shown in Table 9-5. For other cases, insert an explicit coercion to text if you need to duplicate
the previous behavior.

Table 9-5. SQL String Functions and Operators

non-string Or
non-string ||

string

concatenation with
one non-string
input

42

Function Return Type Description Example Result
string || text String "Post’ || PostgreSQL
string concatenation ' greSQL’

string || text String 'vValue: ' || Value: 42

bit_length (string

int

Number of bits in
string

bit_length(’ jos

€32

char_length (strin
or

character_length

pint

string)

Number of
characters in string

char_length (’ jo

lower (string)

text

Convert string to
lower case

lower (" TOM')

tom

octet_length (stri

hint

Number of bytes in
string

octet_length(’j

oke’)

164

Chapter 9. Functions and Operators

upper case

Function Return Type Description Example Result
overlay (string text Replace substring | overlay (’ Txxxxalsfhomas
placing string placing "hom’
from int [for from 2 for 4)
int])
position (substringint Location of position (’ om’ 3
in string) specified substring |in ’Thomas’)
substring (string |text Extract substring | substring (’ Thomasdm
[from int] [for from 2 for 3)
int])
substring (string |text Extract substring | substring (’ Thomasds
from pattern) matching POSIX from ’...$")

regular expression.

See Section 9.7 for

more information

on pattern

matching.
substring (string |text Extract substring | substring (’ Thomaania
from pattern for matching SQL from
escape) regular expression. |’ $#"o_a#"_’

See Section 9.7 for | for "#’)

more information

on pattern

matching.
trim([leading | |text Remove the trim(both ’x’ Tom
trailing | both] longest string from ’xTomxx’)
[characters] from containing only the
string) characters (a

space by default)

from the

start/end/both ends

of the string
upper (string) text Convert string to upper (/ tom’) TOM

Additional string manipulation functions are available and are listed in Table 9-6. Some of them are used
internally to implement the SQL-standard string functions listed in Table 9-5.

Table 9-6. Other String Functions

Function

\ Return Type

‘ Description

Example

Result

165

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

ascii (string)

int

ASCII code of the
first character of
the argument. For
UTF8 returns the
Unicode code point
of the character.
For other multibyte
encodings, the
argument must be
an ASCII
character.

ascii('x")

120

btrim(string text
[, characters

text])

text

Remove the
longest string
consisting only of
characters in
characters (a
space by default)
from the start and
end of string

btrim(/xyxtrimy

’Xy’)

yee* im

chr (int)

text

Character with the
given code. For
UTF8 the
argument is treated
as a Unicode code
point. For other
multibyte
encodings the
argument must
designate an
ASCII character.
The NULL (0)
character is not
allowed because
text data types
cannot store such
bytes.

chr (65)

166

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

convert (string
bytea,
src_encoding
name,
dest_encoding

name)

bytea

Convert string to
dest_encoding
The original
encoding is
specified by
src_encoding.
The st ring must
be valid in this
encoding.
Conversions can be
defined by CREATE
CONVERSTION. Also
there are some
predefined
conversions. See
Table 9-7 for
available
conversions.

convert ('text_1
'UTF8’,
"LATINL')

ntesttf8'n_utf8
represented in
Latin-1 encoding
(ISO 8859-1)

convert_from(stri
bytea,
src_encoding

name)

text

ng

Convert string to
the database
encoding. The
original encoding
is specified by
src_encoding.
The st ring must
be valid in this
encoding.

convert_from ('t
"UTF8")

ecex i ni mufi8f §
represented in the
current database
encoding

bytea

Convert string to

convert_to ('’ somesome text

convert_to (string dest_encoding. |text’, 'UTF8’) |represented in the
text, UTF8 encoding
dest_encoding

name)

decode (string bytea Decode binary decode (' MTIZzAAEFY23\000\001

text, type text)

data from string
previously encoded
with encode.
Parameter type is
same as in

encode.

"baseb6d’)

167

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

encode (data

bytea, type text)

text

Encode binary
data to different
representation.
Supported types
are: base64, hex,
escape. Escape
merely outputs null
bytes as \000 and
doubles
backslashes.

encode (E’ 123\\0
"baseb4d’)

QUN\N\LKAF 5

initcap (string)

text

Convert the first
letter of each word
to upper case and
the rest to lower
case. Words are
sequences of
alphanumeric
characters
separated by
non-alphanumeric
characters.

initcap(’'hi
THOMAS')

Hi Thomas

length (string)

int

Number of
characters in

string

length (’ jose’)

length (stringbyted

encoding name)

,Ant

Number of
characters in
stringin the
given encoding.
The string must
be valid in this
encoding.

length (’ jose’,
"UTF8')

lpad (string
text, length int

[, fill text])

text

Fill up the string
to length length
by prepending the
characters £i11 (a
space by default).
If the stringis
already longer than
length then it is
truncated (on the
right).

lpad("hi’, 5,
'Xy')

xyxhi

168

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

ltrim(string text
[, characters

text])

text

Remove the
longest string
containing only
characters from
characters (a
space by default)
from the start of

string

ltrim(/zzzytrim'trim

’XyZ’)

mdb (string)

text

Calculates the
MDS5 hash of
string, returning
the result in
hexadecimal

md5 (" abc’)

900150983cd24fb
d6963£7d28el7£7

pg_client_encodin

qame

Current client
encoding name

pg_client_encod

iSQI(ASCIT

quote_ident (strin

text)

gtext

Return the given
string suitably
quoted to be used
as an identifier in
an SQL statement
string. Quotes are
added only if
necessary (i.e., if
the string contains
non-identifier
characters or
would be
case-folded).
Embedded quotes
are properly
doubled. See also
Example 39-1.

quote_ident (' Fo

bar’)

o"Foo bar"

169

(@)

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

quote_literal (striihgxt

text)

Return the given
string suitably
quoted to be used
as a string literal in
an SQL statement
string. Embedded
single-quotes and
backslashes are
properly doubled.
Note that
quote_literal
returns null on null
input; if the
argument might be
null,
quote_nullable
is often more
suitable. See also
Example 39-1.

quote_literal (’

O\O Rl Lk ")

quote_literal (val

anyelement)

eext

Coerce the given
value to text and
then quote it as a
literal. Embedded
single-quotes and
backslashes are
properly doubled.

quote_literal (4

2.5 .57

quote_nullable (st

text)

ext

Return the given
string suitably
quoted to be used
as a string literal in
an SQL statement
string; or, if the
argument is null,
return NULL.
Embedded
single-quotes and
backslashes are
properly doubled.
See also Example
39-1.

quote_nullable (

INNULILT)

170

Chapter 9. Functions and Operators

Function Return Type Description Example Result
quote_nullable (vdlnext Coerce the given |quote_nullable (|424%5)5'
anyelement) value to text and
then quote it as a
literal; or, if the
argument is null,
return NULL.
Embedded
single-quotes and
backslashes are
properly doubled.
regexp_matches (stirdegof text[] Return all regexp_matches (| flombdrbaopiebaz
text, pattern captured substrings |/ (bar) (beque)’)
text [, flags resulting from
text]) matching a POSIX
regular expression
against the
string. See
Section 9.7.3 for
more information.
regexp_replace (stjrtiext Replace regexp_replace (/Tbmas’ ,
text, pattern substring(s) /. [mN]a.’,
text, replacement matching a POSIX |'M")
text [, flags regular expression.
text]) See Section 9.7.3
for more
information.
regexp_split_to_gtmesyt§dring Split string regexp_split_to| hrerhlo(, i b}
text, pattern using a POSIX world’,
text [, flags regular expression |E’\\s+’)
text]) as the delimiter.
See Section 9.7.3
for more
information.
regexp_split_to_tadsledft tiext Split string regexp_split_to| hebllewdhkd 1@
text, pattern using a POSIX world’, rows)
text [, flags regular expression |E’\\s+’)
text]) as the delimiter.
See Section 9.7.3
for more
information.
repeat (string text Repeat string the | repeat (' Pg’, PgPgPgPg

text, number int)

specified number
of times

4)

171

Chapter 9. Functions and Operators

Function Return Type Description Example Result
replace (string text Replace all replace (' abcde fladdaXieeff gbXXe f
text, from text, occurrences in fed’, TXX')
to text) string of

substring from

with substring to
rpad (string text Fill up the string |rpad(*hi’, 5, |hixyx
text, length int to length length |’xy’)
[, fill text]) by appending the

characters £fill (a

space by default).

If the stringis

already longer than

length then it is

truncated.
rtrim(string text |text Remove the rtrim(’trimxxxx/trim
[, characters longest string "x")
text]) containing only

characters from
characters (a
space by default)
from the end of

string

split_part (string
text, delimiter

text, field int)

text

Split string on
delimiter and
return the given
field (counting
from one)

split_part (' abc
I~@~I, 2)

~feflef~@~ghi’,

strpos (string,

substring)

int

Location of
specified substring
(same as

position (substri
in string), but
note the reversed
argument order)

strpos ('high’,
Iigl)

substr (string,

from [, count])

text

Extract substring
(same as
substring (string

from from for

count))

substr (" alphabe
3, 2)

Bh

172

Chapter 9. Functions and Operators

Function

Return Type

Description

Example Result

text [, encoding

text])

to_ascii(string text

Convert string
to ASCII from
another encoding
(only supports
conversion from
LATINI, LATINZ,
LATINGO, and
WIN1250
encodings)

to_ascii ('KarellRarel

int or bigint)

to_hex (number text

Convert number to
its equivalent
hexadecimal
representation

to_hex (214748364THfEEEEE

text, from text,

to text)

translate (string | text

Any character in
string that
matches a
character in the
from set is
replaced by the
corresponding
character in the to
set

translate (' 12344253x5
r 14! , 14 aXI)

See also the aggregate function string_agg in Section 9.18.

Table 9-7. Built-in Conversions

Conversion Name -

Source Encoding

Destination Encoding

ascii_to_mic SQL_ASCII MULE_INTERNAL
ascii_to_utfs8 SQL_ASCII UTF8
big5_to_euc_tw BIGS EUC_TW
bigb_to_mic BIGS MULE_INTERNAL
bigb_to_utf8 BIGS UTF8
euc_cn_to_mic EUC_CN MULE_INTERNAL
euc_cn_to_utf8 EUC_CN UTF8
euc_Jjp_to_mic EUC_JP MULE_INTERNAL
euc_jp_to_sjis EUC_JP SJIS
euc_Jjp_to_utfs8 EUC_JP UTFES8
euc_kr_to_mic EUC_KR MULE_INTERNAL
euc_kr_to_utf8 EUC_KR UTFE8
euc_tw_to_bigb EUC_TW BIGS
euc_tw_to_mic EUC_TW MULE_INTERNAL
euc_tw_to_utf8 EUC_TW UTF'8

173

Chapter 9. Functions and Operators

Conversion Name -

Source Encoding

Destination Encoding

gb18030_to_utf8 GB18030 UTF8
gbk_to_utfs8 GBK UTFE8
is0_8859_10_to_utf8 LATING UTFE8
is0_8859_13_to_utf8 LATIN7 UTF8
iso_8859_14_to_utfs LATINS UTF8
iso_8859_15_to_utf8 LATINO UTF8
iso_8859_16_to_utf8 LATIN1O UTF8
is0_8859_1_to_mic LATINI MULE_INTERNAL
iso_8859_1 to_utfs8 LATIN1 UTFE8
is0_8859_2_to_mic LATIN2 MULE_INTERNAL
iso_8859 2 to_utfs8 LATINZ2 UTF8

iso_8859 2 to_windows_1250LATIN2 WIN1250
15s0_8859_3_to_mic LATIN3 MULE_INTERNAL
iso_8859_3 to_utfs8 LATIN3 UTFE8
is0_8859_4_to_mic LATIN4 MULE_INTERNAL
is0_8859_4_to_utfs LATIN4 UTF8
iso_8859_5_to_koi8_r ISO_8859_5 KOI8R
is0_8859_5_to_mic IS0_8859_5 MULE_INTERNAL
iso0_8859_5_to_utf8 ISO_8859_5 UTF8
iso0_8859_5_ _to_windows_125]1IS0O_8859_5 WIN1251
iso_8859_5_to_windows_866|IS0O_8859_5 WIN866
iso_8859_6_to_utf8 ISO_8859_6 UTF8
is0_8859_7_to_utf8 IS0O_8859_7 UTF8
is0_8859_8_to_utfs8 IS0_8859_8 UTF8
iso_8859_9 to_utfs8 LATINS UTF8
johab_to_utfs8 JOHAB UTFES8
koi8_r_to_iso_8859_5 KOI8R IS0O_8859_5
koi8_r_to_mic KOI8R MULE_INTERNAL
koi8_ r_ to_utf8 KOI8R UTFS8

koi8_r_ to_windows_1251 KOI8R WIN1251
koi8_r_to_windows_866 KOI8R WINB66
koi8_u_to_utf8 KOI8U UTF8
mic_to_ascii MULE_INTERNAL SQL_ASCII
mic_to_big5 MULE_INTERNAL BIGS
mic_to_euc_cn MULE_INTERNAL EUC_CN
mic_to_euc_jp MULE_INTERNAL EUC_JP

174

Chapter 9. Functions and Operators

Conversion Name -

Source Encoding

Destination Encoding

mic_to_euc_kr MULE_INTERNAL EUC_KR
mic_to_euc_tw MULE_INTERNAL EUC_TW
mic_to_iso_8859_1 MULE_INTERNAL LATIN1
mic_to_iso_8859 2 MULE_INTERNAL LATIN2
mic_to_iso_8859_3 MULE_INTERNAL LATIN3
mic_to_iso_8859_4 MULE_INTERNAL LATIN4
mic_to_iso_8859_5 MULE_INTERNAL IS0_8859_5
mic_to_koi8_r MULE_INTERNAL KOISR
mic_to_sijis MULE_INTERNAL SJIS
mic_to_windows_1250 MULE_INTERNAL WIN1250
mic_to_windows_1251 MULE_INTERNAL WIN1251
mic_to_windows_866 MULE_INTERNAL WIN866
sjis_to_euc_jp SJIS EUC_JP
sjis_to_mic SJIS MULE_INTERNAL
sjis_to_utf8 SJIS UTF8
tcvn_to_utf8 WIN1258 UTF8
uhc_to_utf8 UHC UTF'8
utf8_to_ascii UTF8 SQL_ASCII
utf8_to_bigh UTF8 BIGS
utf8_to_euc_cn UTF8 EUC_CN
utf8_to_euc_jp UTF8 EUC_JpP
utf8_to_euc_kr UTF8 EUC_KR
utf8_to_euc_tw UTF8 EUC_TW
utf8_to_gbl8030 UTF8 GB18030
utf8_to_gbk UTF8 GBK
utf8_to_iso_8859_1 UTF8 LATIN1
utf8_to_iso_8859_10 UTF8 LATING
utf8_to_iso_8859_13 UTF8 LATIN7
utf8_to_iso_8859_14 UTF8 LATINS
utf8_to_iso_8859_15 UTF8 LATINO
utf8_to_iso_8859_16 UTF8 LATIN1O
utf8_to_iso_8859_2 UTF8 LATIN2
utf8_to_iso_8859_3 UTF8 LATIN3
utf8_to_iso_8859_4 UTF8 LATIN4
utf8_to_iso_8859_5 UTF8 ISO_8859_5
utf8_to_iso_8859_6 UTF8 ISO_8859_6
utf8_to_iso_8859_7 UTF8 IS0_8859_7
utf8_to_iso_8859_8 UTF8 ISO_8859_8

175

Chapter 9. Functions and Operators

Conversion Name -

Source Encoding

Destination Encoding

utf8_to_iso_8859_9 UTFS8 LATINS
ut£8_to_johab UTF8 JOHAB
utf8_to_koi8_r UTF8 KOI8R
utf8_to_koi8_u UTF8 KOI8U
utf8_to_sijis UTF8 SJIS
utf8_to_tcvn UTF8 WIN1258
utf8_to_uhc UTF8 UHC
utf8_to_windows_1250 UTF8 WIN1250
utf8_to_windows_1251 UTF8 WIN1251
utf8_to_windows_1252 UTF8 WIN1252
utf8_to_windows_1253 UTF8 WIN1253
utf8_to_windows_1254 UTF8 WIN1254
utf8_to_windows_1255 UTF8 WIN1255
utf8_to_windows_1256 UTFS8 WIN1256
utf8_to_windows_1257 UTF8 WIN1257
utf8_to_windows_866 UTF8 WIN866
utf8_to_windows_874 UTF8 WIN874
windows_1250_to_1iso_8859 PWIN1250 LATINZ2
windows_1250_to_mic WIN1250 MULE_INTERNAL
windows_1250_to_utf8 WIN1250 UTF8
windows_1251_to_iso_8859_bWIN1251 IS0_8859_5
windows_1251_to_koi8_r WIN1251 KOI8R
windows_1251 to_mic WIN1251 MULE_INTERNAL
windows_1251 to_utf8 WIN1251 UTF8
windows_1251_to_windows_8¢WIN1251 WINB66
windows_1252_ to_utf8 WIN1252 UTFES8
windows_1256_to_utf8 WIN1256 UTF8
windows_866_to_iso_8859_5|WIN866 IS0_8859_5
windows_866_to_koi8_r WINS866 KOI8R
windows_866_to_mic WIN866 MULE_INTERNAL
windows_866_to_utf8 WIN866 UTFE8
windows_866_to_windows_12pPWINB66 WIN
windows_874_to_utf8 WIN874 UTF8
euc_7jis_2004_to_utfs8 EUC_JIS_2004 UTF8

176

Chapter 9. Functions and Operators

Conversion Name -

Source Encoding

Destination Encoding

ut8_to_euc_jis_2004

UTF8

EUC_JIS_2004

shift_jis_2004_to_utfs8

SHIFT_JIS_2004

UTF8

ut8_to_shift_ji

s_2004

UTF8

SHIFT_JIS_2004

euc_jis_2004_to_shift_jis]!

R0C4JIS_2004

SHIFT_JIS_2004

shift_3jis_2004_to_euc_jis|3BOUET_JIS_2004

EUC_JIS_20

04

Notes:

encoding names.

a. The conversion names follow a standard naming scheme: The official name of the source encoding
with all non-alphanumeric characters replaced by underscores, followed by _to_, followed by the
similarly processed destination encoding name. Therefore, the names might deviate from the customary

9.5. Binary String Functions and Operators

This section describes functions and operators for examining and manipulating values of type bytea.

SQL defines some string functions that use key words, rather than commas, to separate arguments. De-
tails are in Table 9-8. PostgreSQL also provides versions of these functions that use the regular function
invocation syntax (see Table 9-9).

Table 9-8. SQL Binary String Functions and Operators

Function Return Type Description Example Result
string || bytea String E’\\\\Post’ : :bytedPost’ gres\000
string concatenation |

E’\\047gres\\00

0’ ::bytea

octet_length (stri

hint

Number of bytes in
binary string

octet_length (E’

\\000se’ : :byts

[from int] [for

int])

overlay (string bytea Replace substring | overlay (E’/ Th\\0[0DOXGGZ \: \:0:33rems
placing string placing
from int [for E’\\002\\003"’ : :bytea
int]) from 2 for 3)
position (substringint Location of position (E/\\000®dm’ : :bytea
in string) specified substring | in
E’Th\\000omas’ :[:bytea)
substring (string |bytea Extract substring | substring (E’ Th\ND0D®@s’ : :bytes

from 2 for 3)

177

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

trim([both]
bytes from

string)

bytea

Remove the
longest string
containing only the
bytes in bytes
from the start and
end of string

trim(E”\\00O0" : :[Skdrea

from
E’\\000Tom\\000

’

::bytea)

Additional binary string manipulation functions are available and are listed in Table 9-9. Some of them
are used internally to implement the SQL-standard string functions listed in Table 9-8.

Table 9-9. Other Binary String Functions

string, returning
the result in
hexadecimal

Function Return Type Description Example Result
btrim(string bytea Remove the btrim(E’\\000tri\N000"’ : :bytea,
bytea, bytes longest string E’\\000’ : :byteal
bytea) consisting only of
bytes in bytes
from the start and
end of string
decode (string bytea Decode binary decode (E’ 123\ \0/00236I(G0456
text, type text) string from 'escape’)
string previously
encoded with
encode. Parameter
type is same as in
encode.
encode (string text Encode binary encode (E’ 123\\ 0002 0 a0tk ea,
bytea, type text) string to 'escape’)
ASCII-only
representation.
Supported types
are: base64, hex,
escape.
get_bit (string, |int Extract bit from get_bit (E' Th\\0O[0Domas’ : :bytea,
offset) string 45)
get_byte (string, |int Extract byte from |get_byte (E’ Th\\[0D@®mas’ : :bytea,
offset) string 4)
length (string) int Length of binary | length (E’ jo\\00[0%e’ : :bytea)
string
md5 (string) text Calculates the md5 (E’ Th\\ 000 oma&da2d3te68 9aafl
MDS5 hash of p4958c334c82d8b

178

[e3)

Chapter 9. Functions and Operators

Function Return Type Description Example Result

set_bit (string, |bytea Set bit in string set_bit (E’ Th\\Olow&Iamks tea,
offset, newvalue) 45, 0)

set_byte (string, |bytea Set byte in string | set_byte (E’ Th\\[(IH\GESkabytea,
offset, newvalue) 4, 64)

get_byte and set_byte number the first byte of a binary string as byte 0. get_bit and set_bit
number bits from the right within each byte; for example bit O is the least significant bit of the first byte,
and bit 15 is the most significant bit of the second byte.

9.6. Bit String Functions and Operators

This section describes functions and operators for examining and manipulating bit strings, that is values
of the types bit and bit varying. Aside from the usual comparison operators, the operators shown in
Table 9-10 can be used. Bit string operands of &, |, and # must be of equal length. When bit shifting, the
original length of the string is preserved, as shown in the examples.

Table 9-10. Bit String Operators

Operator Description Example Result
Il concatenation B/10001’ || B’011’ |10001011
& bitwise AND B’ 10001’ & 00001
B’01101"
bitwise OR B’10001" | 11101
B’ 01101’
bitwise XOR B’10001’ # 11100
B/01101
~ bitwise NOT ~ B’10001’ 01110
<< bitwise shift left B’10001’ << 3 01000
>> bitwise shift right B’10001" >> 2 00100

The following SQL-standard functions work on bit strings as well as character strings: length,
bit_length, octet_length, position, substring, overlay.

The following functions work on bit strings as well as binary strings: get_bit, set_bit. When working
with a bit string, these functions number the first (leftmost) bit of the string as bit 0.

In addition, it is possible to cast integral values to and from type bit. Some examples:

44::pbit (10) 0000101100
44::bit (3) 100

cast (44 as bit(12)) 111111010100
71110’ : :bit (4) : :integer 14

179

Chapter 9. Functions and Operators

Note that casting to just “bit” means casting to bit (1), and so will deliver only the least significant bit
of the integer.

Note: Prior to PostgreSQL 8.0, casting an integer to bit (n) would copy the leftmost n bits of the
integer, whereas now it copies the rightmost n bits. Also, casting an integer to a bit string width wider
than the integer itself will sign-extend on the left.

9.7. Pattern Matching

There are three separate approaches to pattern matching provided by PostgreSQL: the traditional SQL
LIKE operator, the more recent SIMILAR TO operator (added in SQL:1999), and POSIX-style regular
expressions. Aside from the basic “does this string match this pattern?” operators, functions are available
to extract or replace matching substrings and to split a string at matching locations.

Tip: If you have pattern matching needs that go beyond this, consider writing a user-defined function
in Perl or Tcl.

9.7.1. LIKE

string LIKE pattern [ESCAPE escape-character]
string NOT LIKE pattern [ESCAPE escape-character]

The LIKE expression returns true if the string matches the supplied pattern. (As expected, the NOT
LIKE expression returns false if LIKE returns true, and vice versa. An equivalent expression is NOT
(string LIKE pattern).)

If pat tern does not contain percent signs or underscores, then the pattern only represents the string itself;
in that case LIKE acts like the equals operator. An underscore (_) in pattern stands for (matches) any
single character; a percent sign (%) matches any sequence of zero or more characters.

Some examples:

"abc’ LIKE ’abc’ true
"abc’ LIKE "a%’ true
"abc’ LIKE '_b_’ true
"abc’ LIKE ’c’ false

LIKE pattern matching always covers the entire string. Therefore, to match a sequence anywhere within a
string, the pattern must start and end with a percent sign.

To match a literal underscore or percent sign without matching other characters, the respective character
in pattern must be preceded by the escape character. The default escape character is the backslash but a
different one can be selected by using the ESCAPE clause. To match the escape character itself, write two
escape characters.

180

Chapter 9. Functions and Operators

Note that the backslash already has a special meaning in string literals, so to write a pattern constant
that contains a backslash you must write two backslashes in an SQL statement (assuming escape string
syntax is used, see Section 4.1.2.1). Thus, writing a pattern that actually matches a literal backslash means
writing four backslashes in the statement. You can avoid this by selecting a different escape character with
ESCAPE; then a backslash is not special to LIKE anymore. (But backslash is still special to the string literal
parser, so you still need two of them to match a backslash.)

It’s also possible to select no escape character by writing ESCAPE ”. This effectively disables the escape
mechanism, which makes it impossible to turn off the special meaning of underscore and percent signs in
the pattern.

The key word ILIKE can be used instead of LIKE to make the match case-insensitive according to the
active locale. This is not in the SQL standard but is a PostgreSQL extension.

The operator ~~ is equivalent to LIKE, and ~~* corresponds to ILIKE. There are also !~~ and !~~x
operators that represent NOT LIKE and NOT ILIKE, respectively. All of these operators are PostgreSQL-
specific.

9.7.2. stMILAR TO Regular Expressions

string SIMILAR TO pattern [ESCAPE escape-character]
string NOT SIMILAR TO pattern [ESCAPE escape-character]

The SIMILAR TO operator returns true or false depending on whether its pattern matches the given string.
It is similar to LIKE, except that it interprets the pattern using the SQL standard’s definition of a regular
expression. SQL regular expressions are a curious cross between LIKE notation and common regular
expression notation.

Like LIKE, the SIMILAR TO operator succeeds only if its pattern matches the entire string; this is un-
like common regular expression behavior where the pattern can match any part of the string. Also like
LIKE, SIMILAR TO uses _ and % as wildcard characters denoting any single character and any string,
respectively (these are comparable to . and . » in POSIX regular expressions).

In addition to these facilities borrowed from LIKE, SIMILAR TO supports these pattern-matching
metacharacters borrowed from POSIX regular expressions:

« | denotes alternation (either of two alternatives).

« denotes repetition of the previous item zero or more times.

« + denotes repetition of the previous item one or more times.

« 2 denotes repetition of the previous item zero or one time.

« {m} denotes repetition of the previous item exactly m times.

« {m, } denotes repetition of the previous item m or more times.

« {m, n} denotes repetition of the previous item at least m and not more than n times.

« Parentheses () can be used to group items into a single logical item.

« A bracket expression [.. .] specifies a character class, just as in POSIX regular expressions.

Notice that the period (.) is not a metacharacter for SIMILAR TO.

181

Chapter 9. Functions and Operators

As with LIKE, a backslash disables the special meaning of any of these metacharacters; or a different
escape character can be specified with ESCAPE.

Some examples:

"abc’ SIMILAR TO ’abc’ true
"abc’ SIMILAR TO ’a’ false
"abc’ SIMILAR TO ’'%(b|d)%’ true
"abc’ SIMILAR TO " (bl|c)%’ false

The substring function with three parameters, substring(string from pattern for
escape-character) , provides extraction of a substring that matches an SQL regular expression pattern.
As with SIMILAR TO, the specified pattern must match the entire data string, or else the function fails
and returns null. To indicate the part of the pattern that should be returned on success, the pattern must
contain two occurrences of the escape character followed by a double quote ("). The text matching the
portion of the pattern between these markers is returned.

Some examples, with #" delimiting the return string:

substring (' foobar’ from ’'S$#"o_b#"%’ for ’"#') oob
substring (' foobar’ from '#"o_b#"%’ for "#') NULL

9.7.3. POSIX Regular Expressions

Table 9-11 lists the available operators for pattern matching using POSIX regular expressions.

Table 9-11. Regular Expression Match Operators

Operator Description Example
~ Matches regular expression, case |’ thomas’ ~ ’.xthomas.x*’
sensitive
~% Matches regular expression, case |’ thomas’ ~x /.xThomas.*’
insensitive
I~ Does not match regular "thomas’ !~ ’.+Thomas.x’
expression, case sensitive
[Does not match regular "thomas’ !~% ’.+vadim.x’
expression, case insensitive

POSIX regular expressions provide a more powerful means for pattern matching than the LIKE and
SIMILAR TO operators. Many Unix tools such as egrep, sed, or awk use a pattern matching language
that is similar to the one described here.

A regular expression is a character sequence that is an abbreviated definition of a set of strings (a regular
set). A string is said to match a regular expression if it is a member of the regular set described by the
regular expression. As with LIKE, pattern characters match string characters exactly unless they are special
characters in the regular expression language — but regular expressions use different special characters

182

Chapter 9. Functions and Operators

than LIKE does. Unlike LIKE patterns, a regular expression is allowed to match anywhere within a string,
unless the regular expression is explicitly anchored to the beginning or end of the string.

Some examples:

"abc’ ~ ’"abc’ true
"abc’ ~ "7a’ true
rabc” ~ " (b|d)’ true
rabce’ ~ """ (blc)’ false

The POSIX pattern language is described in much greater detail below.

The substring function with two parameters, substring (string from pattern), provides extrac-
tion of a substring that matches a POSIX regular expression pattern. It returns null if there is no match,
otherwise the portion of the text that matched the pattern. But if the pattern contains any parentheses,
the portion of the text that matched the first parenthesized subexpression (the one whose left parenthe-
sis comes first) is returned. You can put parentheses around the whole expression if you want to use
parentheses within it without triggering this exception. If you need parentheses in the pattern before the
subexpression you want to extract, see the non-capturing parentheses described below.

Some examples:

substring (’ foobar’ from ’'o0.b’) oob
substring (’ foobar’ from ‘o(.)b’) o

The regexp_replace function provides substitution of new text for substrings that match POSIX regu-
lar expression patterns. It has the syntax regexp_replace(source, pattern, replacement [, flags
1). The source string is returned unchanged if there is no match to the pattern. If there is a match,
the source string is returned with the replacement string substituted for the matching substring. The
replacement string can contain \ n, where nis 1 through 9, to indicate that the source substring matching
the n’th parenthesized subexpression of the pattern should be inserted, and it can contain \ & to indicate
that the substring matching the entire pattern should be inserted. Write \\ if you need to put a literal
backslash in the replacement text. (As always, remember to double backslashes written in literal constant
strings, assuming escape string syntax is used.) The £flags parameter is an optional text string contain-
ing zero or more single-letter flags that change the function’s behavior. Flag i specifies case-insensitive
matching, while flag g specifies replacement of each matching substring rather than only the first one.
Other supported flags are described in Table 9-19.

Some examples:

regexp_replace (’ foobarbaz’, 'b..’, 'X")

fooXbaz
regexp_replace (' foobarbaz’, 'b..’, X', 'g’)

fooXX
regexp_replace (' foobarbaz’, 'b(..)’, E’X\\1Y’, 'g’)

fooXarYXazY

The regexp_matches function returns a text array of all of the captured substrings resulting from match-
ing a POSIX regular expression pattern. It has the syntax regexp_matches(string, pattern|[, flags

183

Chapter 9. Functions and Operators

1). The function can return no rows, one row, or multiple rows (see the g flag below). If the pat tern does
not match, the function returns no rows. If the pattern contains no parenthesized subexpressions, then
each row returned is a single-element text array containing the substring matching the whole pattern. If
the pattern contains parenthesized subexpressions, the function returns a text array whose n’th element is
the substring matching the n’th parenthesized subexpression of the pattern (not counting “non-capturing”
parentheses; see below for details). The £1ags parameter is an optional text string containing zero or more
single-letter flags that change the function’s behavior. Flag g causes the function to find each match in the
string, not only the first one, and return a row for each such match. Other supported flags are described in
Table 9-19.

Some examples:

SELECT regexp_matches (' foobarbequebaz’, ’ (bar) (beque)’);
regexp_matches

{bar,beque}
(1 row)

SELECT regexp_matches (’ foobarbequebazilbarfbonk’, ' (b["b]l+) (b["b]+)", "g’);
regexp_matches

{bar, beque}
{bazil,barf}
(2 rows)

SELECT regexp_matches (' foobarbequebaz’, ’'barbeque’);
regexp_matches

{barbeque}
(1 row)

It is possible to force regexp_matches () to always return one row by using a sub-select; this is partic-
ularly useful in a SELECT target list when you want all rows returned, even non-matching ones:

SELECT coll, (SELECT regexp_matches(col2, ' (bar) (beque)’)) FROM tab;

The regexp_split_to_table function splits a string using a POSIX regular expression pattern as a
delimiter. It has the syntax regexp_split_to_table(string, pattern [, flags]). If there is no
match to the pattern, the function returns the string. If there is at least one match, for each match
it returns the text from the end of the last match (or the beginning of the string) to the beginning of the
match. When there are no more matches, it returns the text from the end of the last match to the end of
the string. The £1ags parameter is an optional text string containing zero or more single-letter flags that
change the function’s behavior. regexp_split_to_table supports the flags described in Table 9-19.

The regexp_split_to_array function behaves the same as regexp_split_to_table,
except that regexp_split_to_array returns its result as an array of text. It has the syntax
regexp_split_to_array(string, pattern [, flags]). The parameters are the same as for
regexp_split_to_table.

Some examples:

184

Chapter 9. Functions and Operators

SELECT foo FROM regexp_split_to_table(’the quick brown fox jumped over the lazy dog’, E’\\s
foo

quick
brown
fox
Jjumped
over
the
lazy
dog

(9 rows)

SELECT regexp_split_to_array(’the quick brown fox jumped over the lazy dog’, E’\\s+’);
regexp_split_to_array

{the, quick, brown, fox, jumped, over, the, lazy, dog}
(1 row)

SELECT foo FROM regexp_split_to_table(’the quick brown fox’, E’\\s*’) AS foo;
foo

6 rows)

As the last example demonstrates, the regexp split functions ignore zero-length matches that occur at the
start or end of the string or immediately after a previous match. This is contrary to the strict definition of
regexp matching that is implemented by regexp_matches, but is usually the most convenient behavior
in practice. Other software systems such as Perl use similar definitions.

185

Chapter 9. Functions and Operators

9.7.3.1. Regular Expression Details

PostgreSQL’s regular expressions are implemented using a software package written by Henry Spencer.
Much of the description of regular expressions below is copied verbatim from his manual.

Regular expressions (REs), as defined in POSIX 1003.2, come in two forms: extended REs or EREs
(roughly those of egrep), and basic REs or BREs (roughly those of ed). PostgreSQL supports both
forms, and also implements some extensions that are not in the POSIX standard, but have become widely
used due to their availability in programming languages such as Perl and Tcl. REs using these non-POSIX
extensions are called advanced REs or AREs in this documentation. AREs are almost an exact superset of
EREs, but BREs have several notational incompatibilities (as well as being much more limited). We first
describe the ARE and ERE forms, noting features that apply only to AREs, and then describe how BREs
differ.

Note: PostgreSQL always initially presumes that a regular expression follows the ARE rules. However,
the more limited ERE or BRE rules can be chosen by prepending an embedded option to the RE
pattern, as described in Section 9.7.3.4. This can be useful for compatibility with applications that
expect exactly the POSIX 1003.2 rules.

A regular expression is defined as one or more branches, separated by |. It matches anything that matches
one of the branches.

A branch is zero or more quantified atoms or constraints, concatenated. It matches a match for the first,
followed by a match for the second, etc; an empty branch matches the empty string.

A quantified atom is an atom possibly followed by a single quantifier. Without a quantifier, it matches a
match for the atom. With a quantifier, it can match some number of matches of the atom. An atom can
be any of the possibilities shown in Table 9-12. The possible quantifiers and their meanings are shown in
Table 9-13.

A constraint matches an empty string, but matches only when specific conditions are met. A constraint can
be used where an atom could be used, except it cannot be followed by a quantifier. The simple constraints
are shown in Table 9-14; some more constraints are described later.

Table 9-12. Regular Expression Atoms

Atom Description

(re) (where re is any regular expression) matches a
match for re, with the match noted for possible
reporting

(?:re) as above, but the match is not noted for reporting
(a “non-capturing” set of parentheses) (AREs
only)

matches any single character

[chars] a bracket expression, matching any one of the
chars (see Section 9.7.3.2 for more detail)

\k (where k is a non-alphanumeric character)
matches that character taken as an ordinary
character, e.g., \\ matches a backslash character

186

Chapter 9. Functions and Operators

Atom

Description

\c

where c is alphanumeric (possibly followed by
other characters) is an escape, see Section 9.7.3.3
(AREs only; in EREs and BREs, this matches c)

when followed by a character other than a digit,
matches the left-brace character {; when followed
by a digit, it is the beginning of a bound (see
below)

where x is a single character with no other
significance, matches that character

An RE cannot end with \.

Note: Remember that the backslash (\) already has a special meaning in PostgreSQL string literals.
To write a pattern constant that contains a backslash, you must write two backslashes in the statement,
assuming escape string syntax is used (see Section 4.1.2.1).

Table 9-13. Regular Expression Quantifiers

Quantifier Matches

* a sequence of 0 or more matches of the atom
+ a sequence of 1 or more matches of the atom
? a sequence of 0 or 1 matches of the atom

{m} a sequence of exactly m matches of the atom
{m,} a sequence of m or more matches of the atom
{m, n} a sequence of m through n (inclusive) matches of

the atom; m cannot exceed n

*? non-greedy version of

+7? non-greedy version of +

27 non-greedy version of ?

{m}? non-greedy version of {m}

{m, }? non-greedy version of {m, }

{m, n}? non-greedy version of {m, n}

The forms using { . . .} are known as bounds. The numbers m and n within a bound are unsigned decimal
integers with permissible values from 0 to 255 inclusive.

Non-greedy quantifiers (available in AREs only) match the same possibilities as their corresponding nor-
mal (greedy) counterparts, but prefer the smallest number rather than the largest number of matches. See

Section 9.7.3.5 for more detail.

Note: A quantifier cannot immediately follow another quantifier, e.g., =« is invalid. A quantifier cannot
begin an expression or subexpression or follow ~ or |.

187

Chapter 9. Functions and Operators

Table 9-14. Regular Expression Constraints

Constraint Description
8 matches at the beginning of the string
$ matches at the end of the string
(?=re) positive lookahead matches at any point where a

substring matching re begins (AREs only)

(?!re) negative lookahead matches at any point where no
substring matching re begins (AREs only)

Lookahead constraints cannot contain back references (see Section 9.7.3.3), and all parentheses within
them are considered non-capturing.

9.7.3.2. Bracket Expressions

A bracket expression is a list of characters enclosed in []. It normally matches any single character from
the list (but see below). If the list begins with ~, it matches any single character not from the rest of the list.
If two characters in the list are separated by —, this is shorthand for the full range of characters between
those two (inclusive) in the collating sequence, e.g., [0-9] in ASCII matches any decimal digit. It is
illegal for two ranges to share an endpoint, e.g., a—c—e. Ranges are very collating-sequence-dependent,
so portable programs should avoid relying on them.

To include a literal] in the list, make it the first character (after ~, if that is used). To include a literal -,
make it the first or last character, or the second endpoint of a range. To use a literal - as the first endpoint
of a range, enclose itin [. and .] to make it a collating element (see below). With the exception of these
characters, some combinations using [(see next paragraphs), and escapes (AREs only), all other special
characters lose their special significance within a bracket expression. In particular, \ is not special when
following ERE or BRE rules, though it is special (as introducing an escape) in AREs.

Within a bracket expression, a collating element (a character, a multiple-character sequence that collates
as if it were a single character, or a collating-sequence name for either) enclosed in [. and .] stands
for the sequence of characters of that collating element. The sequence is treated as a single element of
the bracket expression’s list. This allows a bracket expression containing a multiple-character collating
element to match more than one character, e.g., if the collating sequence includes a ch collating element,
then the RE [[.ch.]]«c matches the first five characters of chchcec.

Note: PostgreSQL currently does not support multi-character collating elements. This information
describes possible future behavior.

Within a bracket expression, a collating element enclosed in [= and =] is an equivalence class, standing
for the sequences of characters of all collating elements equivalent to that one, including itself. (If there
are no other equivalent collating elements, the treatment is as if the enclosing delimiters were [. and .].)
For example, if o and ~ are the members of an equivalence class, then [[=o=11, [[="=]1, and [o"] are
all synonymous. An equivalence class cannot be an endpoint of a range.

Within a bracket expression, the name of a character class enclosed in [: and :] stands for the list of
all characters belonging to that class. Standard character class names are: alnum, alpha, blank, cntrl,

188

Chapter 9. Functions and Operators

digit, graph, lower, print, punct, space, upper, xdigit. These stand for the character classes
defined in ctype. A locale can provide others. A character class cannot be used as an endpoint of a range.

There are two special cases of bracket expressions: the bracket expressions [[:<:]1] and [[:>:]] are
constraints, matching empty strings at the beginning and end of a word respectively. A word is defined as
a sequence of word characters that is neither preceded nor followed by word characters. A word character
is an alnum character (as defined by ctype) or an underscore. This is an extension, compatible with but
not specified by POSIX 1003.2, and should be used with caution in software intended to be portable to
other systems. The constraint escapes described below are usually preferable; they are no more standard,
but are easier to type.

9.7.3.3. Regular Expression Escapes

Escapes are special sequences beginning with \ followed by an alphanumeric character. Escapes come in
several varieties: character entry, class shorthands, constraint escapes, and back references. A \ followed
by an alphanumeric character but not constituting a valid escape is illegal in AREs. In EREs, there are no
escapes: outside a bracket expression, a \ followed by an alphanumeric character merely stands for that
character as an ordinary character, and inside a bracket expression, \ is an ordinary character. (The latter
is the one actual incompatibility between EREs and ARE:s.)

Character-entry escapes exist to make it easier to specify non-printing and other inconvenient characters
in REs. They are shown in Table 9-15.

Class-shorthand escapes provide shorthands for certain commonly-used character classes. They are
shown in Table 9-16.

A constraint escape is a constraint, matching the empty string if specific conditions are met, written as an
escape. They are shown in Table 9-17.

A back reference (\n) matches the same string matched by the previous parenthesized subexpression
specified by the number n (see Table 9-18). For example, ([bc]) \1 matches bb or cc but not bc or cb.
The subexpression must entirely precede the back reference in the RE. Subexpressions are numbered in
the order of their leading parentheses. Non-capturing parentheses do not define subexpressions.

Note: Keep in mind that an escape’s leading \ will need to be doubled when entering the pattern as
an SQL string constant. For example:

123" ~ E'M\\d{3}’ true

Table 9-15. Regular Expression Character-Entry Escapes

Escape Description

\a alert (bell) character, as in C

\b backspace, as in C

\B synonym for backslash (\) to help reduce the need
for backslash doubling

189

Chapter 9. Functions and Operators

Escape Description
\cX (where X is any character) the character whose
low-order 5 bits are the same as those of x, and
whose other bits are all zero
\e the character whose collating-sequence name is
ESC, or failing that, the character with octal value
033
\f form feed, as in C
\n newline, as in C
\r carriage return, as in C
\t horizontal tab, as in C
\uwxyz (where wxyz is exactly four hexadecimal digits)
the UTF16 (Unicode, 16-bit) character U+wxyz in
the local byte ordering
\Ustuvwxyz (where stuvwxyz is exactly eight hexadecimal
digits) reserved for a hypothetical Unicode
extension to 32 bits
\v vertical tab, as in C
\xhhh (where hhh is any sequence of hexadecimal
digits) the character whose hexadecimal value is
Oxhhh (a single character no matter how many
hexadecimal digits are used)
\O the character whose value is 0 (the null byte)
\xy (where xy is exactly two octal digits, and is not a
back reference) the character whose octal value is
Oxy
\xyz (where xyz is exactly three octal digits, and is not

a back reference) the character whose octal value

is Oxyz

Hexadecimal digits are 0-9, a-£, and A-F. Octal digits are 0-7.

The character-entry escapes are always taken as ordinary characters. For example, \135 is] in ASCII,

but \ 135 does not terminate a bracket expression.

Table 9-16. Regular Expression Class-Shorthand Escapes

Escape Description

\d [[:digit:]]

\'s [[:space:]]

\w [[:alnum:]_] (note underscore is included)
\D [~[:digit:]]

\S [*[:space:]]

\W [~[:alnum:]_] (note underscore is included)

190

Chapter 9. Functions and Operators

Within bracket expressions, \d, \s, and \w lose their outer brackets, and \D, \S, and \w are illegal.
(So, for example, [a-c\d] is equivalent to [a—-c[:digit:]]. Also, [a-c\D], which is equivalent to

[a—c”[:digit:]1],isillegal.)

Table 9-17. Regular Expression Constraint Escapes

Escape Description

\A matches only at the beginning of the string (see
Section 9.7.3.5 for how this differs from *)

\m matches only at the beginning of a word

\M matches only at the end of a word

\y matches only at the beginning or end of a word

\Y matches only at a point that is not the beginning or
end of a word

\Z matches only at the end of the string (see Section
9.7.3.5 for how this differs from $)

A word is defined as in the specification of [[:<:]]

within bracket expressions.

Table 9-18. Regular Expression Back References

and [[:>:]] above. Constraint escapes are illegal

Escape Description

\m (where m is a nonzero digit) a back reference to
the m’th subexpression

\mnn (where m is a nonzero digit, and nn is some more

digits, and the decimal value mnn is not greater
than the number of closing capturing parentheses
seen so far) a back reference to the mnn’th

subexpression

Note: There is an inherent ambiguity between octal character-entry escapes and back references,
which is resolved by the following heuristics, as hinted at above. A leading zero always indicates an
octal escape. A single non-zero digit, not followed by another digit, is always taken as a back reference.
A multi-digit sequence not starting with a zero is taken as a back reference if it comes after a suitable
subexpression (i.e., the number is in the legal range for a back reference), and otherwise is taken as

octal.

9.7.3.4. Regular Expression Metasyntax

In addition to the main syntax described above, there are some special forms and miscellaneous syntactic

facilities available.

An RE can begin with one of two special director prefixes. If an RE begins with =« x :, the rest of the RE
is taken as an ARE. (This normally has no effect in PostgreSQL, since REs are assumed to be AREs; but it

191

Chapter 9. Functions and Operators

does have an effect if ERE or BRE mode had been specified by the f1ags parameter to a regex function.)
If an RE begins with «+x=, the rest of the RE is taken to be a literal string, with all characters considered
ordinary characters.

An ARE can begin with embedded options: a sequence (?xyz) (where xyz is one or more alphabetic
characters) specifies options affecting the rest of the RE. These options override any previously determined
options — in particular, they can override the case-sensitivity behavior implied by a regex operator, or the
flags parameter to a regex function. The available option letters are shown in Table 9-19. Note that these
same option letters are used in the £1ags parameters of regex functions.

Table 9-19. ARE Embedded-Option Letters

Option Description

b rest of RE is a BRE

c case-sensitive matching (overrides operator type)
e rest of RE is an ERE

i case-insensitive matching (see Section 9.7.3.5)

(overrides operator type)

m historical synonym for n

n newline-sensitive matching (see Section 9.7.3.5)

P partial newline-sensitive matching (see Section
9.7.3.5)

q rest of RE is a literal (“quoted”) string, all
ordinary characters

s non-newline-sensitive matching (default)

t tight syntax (default; see below)

W inverse partial newline-sensitive (“weird”)

matching (see Section 9.7.3.5)

x expanded syntax (see below)

Embedded options take effect at the) terminating the sequence. They can appear only at the start of an
ARE (after the »»« : director if any).

In addition to the usual (tight) RE syntax, in which all characters are significant, there is an expanded
syntax, available by specifying the embedded x option. In the expanded syntax, white-space characters in
the RE are ignored, as are all characters between a # and the following newline (or the end of the RE).
This permits paragraphing and commenting a complex RE. There are three exceptions to that basic rule:

« a white-space character or # preceded by \ is retained
- white space or # within a bracket expression is retained
+ white space and comments cannot appear within multi-character symbols, such as (2 :

For this purpose, white-space characters are blank, tab, newline, and any character that belongs to the
space character class.

Finally, in an ARE, outside bracket expressions, the sequence (2#ttt) (where ttt is any text not con-
taining a)) is a comment, completely ignored. Again, this is not allowed between the characters of multi-

192

Chapter 9. Functions and Operators

character symbols, like (2:. Such comments are more a historical artifact than a useful facility, and their
use is deprecated; use the expanded syntax instead.

None of these metasyntax extensions is available if an initial «**= director has specified that the user’s
input be treated as a literal string rather than as an RE.

9.7.3.5. Regular Expression Matching Rules

In the event that an RE could match more than one substring of a given string, the RE matches the one
starting earliest in the string. If the RE could match more than one substring starting at that point, either
the longest possible match or the shortest possible match will be taken, depending on whether the RE is
greedy or non-greedy.

Whether an RE is greedy or not is determined by the following rules:

« Most atoms, and all constraints, have no greediness attribute (because they cannot match variable
amounts of text anyway).

+ Adding parentheses around an RE does not change its greediness.

« A quantified atom with a fixed-repetition quantifier ({m} or {m}?) has the same greediness (possibly
none) as the atom itself.

« A quantified atom with other normal quantifiers (including {m, n} with m equal to n) is greedy (prefers
longest match).

« A quantified atom with a non-greedy quantifier (including {m, n}? with m equal to n) is non-greedy
(prefers shortest match).

+ A branch — that is, an RE that has no top-level | operator — has the same greediness as the first
quantified atom in it that has a greediness attribute.

« An RE consisting of two or more branches connected by the | operator is always greedy.

The above rules associate greediness attributes not only with individual quantified atoms, but with
branches and entire REs that contain quantified atoms. What that means is that the matching is done in
such a way that the branch, or whole RE, matches the longest or shortest possible substring as a whole.
Once the length of the entire match is determined, the part of it that matches any particular subexpression
is determined on the basis of the greediness attribute of that subexpression, with subexpressions starting
earlier in the RE taking priority over ones starting later.

An example of what this means:

SELECT SUBSTRING (’/XY1234ZzZ", "Y*x([0-91{1,3})");
Result: 123

SELECT SUBSTRING (’"XY12347z’, '"Yx2([0-9]1{1,3})");
Result: 1

In the first case, the RE as a whole is greedy because v« is greedy. It can match beginning at the v, and it
matches the longest possible string starting there, i.e., Y123. The output is the parenthesized part of that,
or 123. In the second case, the RE as a whole is non-greedy because Y« ? is non-greedy. It can match
beginning at the v, and it matches the shortest possible string starting there, i.e., Y1. The subexpression

193

Chapter 9. Functions and Operators

[0-91{1, 3} is greedy but it cannot change the decision as to the overall match length; so it is forced to
match just 1.

In short, when an RE contains both greedy and non-greedy subexpressions, the total match length is
either as long as possible or as short as possible, according to the attribute assigned to the whole RE. The
attributes assigned to the subexpressions only affect how much of that match they are allowed to “eat”
relative to each other.

The quantifiers {1, 1} and {1, 1}? can be used to force greediness or non-greediness, respectively, on a
subexpression or a whole RE.

Match lengths are measured in characters, not collating elements. An empty string is considered
longer than no match at all. For example: bbx matches the three middle characters of abbbc;
(week |wee) (night |knights) matches all ten characters of weeknights; when (.) .« is matched
against abc the parenthesized subexpression matches all three characters; and when (a«) « is matched
against bc both the whole RE and the parenthesized subexpression match an empty string.

If case-independent matching is specified, the effect is much as if all case distinctions had vanished from
the alphabet. When an alphabetic that exists in multiple cases appears as an ordinary character outside a
bracket expression, it is effectively transformed into a bracket expression containing both cases, e.g., x
becomes [xX]. When it appears inside a bracket expression, all case counterparts of it are added to the
bracket expression, e.g., [x] becomes [xX] and [~x] becomes ["xX].

If newline-sensitive matching is specified, . and bracket expressions using ~ will never match the newline
character (so that matches will never cross newlines unless the RE explicitly arranges it) and ~and $ will
match the empty string after and before a newline respectively, in addition to matching at beginning and
end of string respectively. But the ARE escapes \A and \z continue to match beginning or end of string
only.

If partial newline-sensitive matching is specified, this affects . and bracket expressions as with newline-
sensitive matching, but not ~ and s.

If inverse partial newline-sensitive matching is specified, this affects ~ and $ as with newline-sensitive
matching, but not . and bracket expressions. This isn’t very useful but is provided for symmetry.

9.7.3.6. Limits and Compatibility

No particular limit is imposed on the length of REs in this implementation. However, programs intended to
be highly portable should not employ REs longer than 256 bytes, as a POSIX-compliant implementation
can refuse to accept such REs.

The only feature of AREs that is actually incompatible with POSIX EREs is that \ does not lose its
special significance inside bracket expressions. All other ARE features use syntax which is illegal or
has undefined or unspecified effects in POSIX EREs; the ==« syntax of directors likewise is outside the
POSIX syntax for both BREs and EREs.

Many of the ARE extensions are borrowed from Perl, but some have been changed to clean them up, and a
few Perl extensions are not present. Incompatibilities of note include \b, \B, the lack of special treatment
for a trailing newline, the addition of complemented bracket expressions to the things affected by newline-
sensitive matching, the restrictions on parentheses and back references in lookahead constraints, and the
longest/shortest-match (rather than first-match) matching semantics.

194

Chapter 9. Functions and Operators

Two significant incompatibilities exist between AREs and the ERE syntax recognized by pre-7.4 releases
of PostgreSQL:

« In AREs, \ followed by an alphanumeric character is either an escape or an error, while in previous
releases, it was just another way of writing the alphanumeric. This should not be much of a problem
because there was no reason to write such a sequence in earlier releases.

« In AREs, \ remains a special character within [], so a literal \ within a bracket expression must be
written \\.

9.7.3.7. Basic Regular Expressions

BREs differ from EREs in several respects. In BREs, |, +, and ? are ordinary characters and there is no
equivalent for their functionality. The delimiters for bounds are \ { and \ '}, with { and } by themselves
ordinary characters. The parentheses for nested subexpressions are \ (and \), with (and) by themselves
ordinary characters. ~ is an ordinary character except at the beginning of the RE or the beginning of
a parenthesized subexpression, $ is an ordinary character except at the end of the RE or the end of a
parenthesized subexpression, and = is an ordinary character if it appears at the beginning of the RE or
the beginning of a parenthesized subexpression (after a possible leading ~). Finally, single-digit back
references are available, and \ < and \ > are synonyms for [[:<:]1] and [[:>:]] respectively; no other
escapes are available in BREs.

9.8. Data Type Formatting Functions

The PostgreSQL formatting functions provide a powerful set of tools for converting various data types
(date/time, integer, floating point, numeric) to formatted strings and for converting from formatted strings
to specific data types. Table 9-20 lists them. These functions all follow a common calling convention: the
first argument is the value to be formatted and the second argument is a template that defines the output
or input format.

A single-argument to_timestamp function is also available; it accepts a double precision argu-
ment and converts from Unix epoch (seconds since 1970-01-01 00:00:00+00) to t imestamp with time
zone. (Integer Unix epochs are implicitly cast to double precision.)

Table 9-20. Formatting Functions

Function Return Type Description Example
to_char (timestamp, text convert time stamp to to_char (current_tim
text) string "HH12:MI:SS’)
to_char (interval, text convert interval to string | to_char (interval
text) "15h 2m 12s’,

"HH24 :MI:SS')

195

estamp,

Chapter 9. Functions and Operators

numeric

Function Return Type Description Example
to_char (int, text) text convert integer to string | to_char (125,
999")
to_char (double text convert real/double to_char(125.8::real
precision, text) precision to string 7999D9")
to_char (numeric, text convert numeric to to_char (-125.8,
text) string r999D995")
to_date (text, text) date convert string to date to_date (' 05 Dec 200
'DD Mon YYYY')
to_number (text, text) | numeric convert string to to_number (' 12,454.8

"99G999D9s”)

to_timestamp (text, timestamp with

text) time zone

convert string to time
stamp

to_timestamp (' 05 Deg
DD Mon YYYY’)

to_timestamp (double timestamp with

time zone

precision)

convert Unix epoch to
time stamp

to_timestamp (1284395

In a to_char output template string, there are certain patterns that are recognized and replaced with
appropriately-formatted data based on the given value. Any text that is not a template pattern is simply
copied verbatim. Similarly, in an input template string (for the other functions), template patterns identify

the values to be supplied by the input data string.

Table 9-21 shows the template patterns available for formatting date and time values.

Table 9-21. Template Patterns for Date/Time Formatting

Pattern Description

HH hour of day (01-12)

HH12 hour of day (01-12)

HH24 hour of day (00-23)

MI minute (00-59)

SS second (00-59)

MS millisecond (000-999)

Us microsecond (000000-999999)
SSSS seconds past midnight (0-86399)

AM, am, PM Or pm

meridiem indicator (without periods)

A.M.,a.m.,P.M. Orp.m.

meridiem indicator (with periods)

Y, YYY year (4 and more digits) with comma
YYYY year (4 and more digits)

YYy last 3 digits of year

Yy last 2 digits of year

Y last digit of year

IYYY ISO year (4 and more digits)

IYY last 3 digits of ISO year

196

c 2000",

2323)

Chapter 9. Functions and Operators

Pattern Description
IY last 2 digits of ISO year
I last digit of ISO year

BC, bc, AD or ad

era indicator (without periods)

B.C.,b.c.,A.D.Ora.d.

era indicator (with periods)

MONTH full upper case month name (blank-padded to 9
chars)

Month full capitalized month name (blank-padded to 9
chars)

month full lower case month name (blank-padded to 9
chars)

MON abbreviated upper case month name (3 chars in
English, localized lengths vary)

Mon abbreviated capitalized month name (3 chars in
English, localized lengths vary)

mon abbreviated lower case month name (3 chars in
English, localized lengths vary)

MM month number (01-12)

DAY full upper case day name (blank-padded to 9
chars)

Day full capitalized day name (blank-padded to 9
chars)

day full lower case day name (blank-padded to 9 chars)

DY abbreviated upper case day name (3 chars in
English, localized lengths vary)

Dy abbreviated capitalized day name (3 chars in
English, localized lengths vary)

dy abbreviated lower case day name (3 chars in
English, localized lengths vary)

DDD day of year (001-366)

IDDD ISO day of year (001-371; day 1 of the year is
Monday of the first ISO week.)

DD day of month (01-31)

D day of the week, Sunday(1) to Saturday(7)

1D ISO day of the week, Monday(1) to Sunday(7)

W week of month (1-5) (The first week starts on the
first day of the month.)

WW week number of year (1-53) (The first week starts
on the first day of the year.)

Iw ISO week number of year (01 - 53; the first

Thursday of the new year is in week 1.)

197

Chapter 9. Functions and Operators

Pattern Description

cc century (2 digits) (The twenty-first century starts
on 2001-01-01.)

J Julian Day (days since November 24, 4714 BC at
midnight)

0 quarter (ignored by to_date and
to_timestamp)

RM month in upper case Roman numerals (I-XII;
I=January)

rm month in lower case Roman numerals (i-xii;
i=January)

TZ upper case time-zone name

tz lower case time-zone name

Modifiers can be applied to any template pattern to alter its behavior. For example, FMMonth is the Month
pattern with the FM modifier. Table 9-22 shows the modifier patterns for date/time formatting.

Table 9-22. Template Pattern Modifiers for Date/Time Formatting

Modifier Description Example
FM prefix fill mode (suppress padding FMMonth
blanks and zeroes)
TH suffix upper case ordinal number suffix |DDTH, e.g., 12TH
th suffix lower case ordinal number suffix |DDth, e.g., 12th
FX prefix fixed format global option (see FX Month DD Day
usage notes)
TM prefix translation mode (print localized | TMMonth
day and month names based on
Ic_time)
SP suffix spell mode (not implemented) DDSP

Usage notes for date/time formatting:

FM suppresses leading zeroes and trailing blanks that would otherwise be added to make the output of
a pattern be fixed-width. In PostgreSQL, FM modifies only the next specification, while in Oracle FM
affects all subsequent specifications, and repeated FM modifiers toggle fill mode on and off.

TM does not include trailing blanks.

to_timestamp and to_date skip multiple blank spaces in the input string unless the FX
option is used. For example, to_timestamp (’2000 JUN’, ’YYYY MON’) works, but
to_timestamp (2000 JUN’, 'FXYYYY MON’) returns an error because to_timestamp
expects one space only. Fx must be specified as the first item in the template.

Ordinary text is allowed in to_char templates and will be output literally. You can put a substring
in double quotes to force it to be interpreted as literal text even if it contains pattern key words. For

198

Chapter 9. Functions and Operators

example, in ' "Hello Year "YYYY’, the YyvyYy will be replaced by the year data, but the single v
in Year will not be. In to_date, to_number, and to_timestamp, double-quoted strings skip the
number of input characters contained in the string, e.g. "xx" skips two input characters.

- If you want to have a double quote in the output you must precede it with a backslash, for example
E'\\"YYYyY Month\\"’. (Two backslashes are necessary because the backslash has special meaning
when using the escape string syntax.)

« The YYvYY conversion from string to timestamp or date has a restriction when processing years
with more than 4 digits. You must use some non-digit character or template after YYYY, otherwise the
year is always interpreted as 4 digits. For example (with the year 20000): to_date (1200001131’
" yYYYMMDD’) will be interpreted as a 4-digit year; instead use a non-digit separator after the year, like
to_date (20000-1131’, ’YYYY-MMDD’) oOr to_date (' 20000Nov31l’, ’YYYYMonDD’).

+ In conversions from string to timestamp or date, the CC (century) field is ignored if there is a YYY,
YYYY OorY, Yyy field. If cc is used with Yy or Y then the year is computed as (CC-1) x100+YY.

+ AnISO week date (as distinct from a Gregorian date) can be specified to to_timestamp and to_date
in one of two ways:

- Year, week, and weekday: for example to_date (' 2006-42-4", ’IYYY-IW-ID’) returns the date
2006-10-19. If you omit the weekday it is assumed to be 1 (Monday).

- Year and day of year: for example to_date(’2006-291’, ’IYYY-IDDD’) also returns
2006-10-109.

Attempting to construct a date using a mixture of ISO week and Gregorian date fields is nonsensical,
and will cause an error. In the context of an ISO year, the concept of a “month” or “day of month”
has no meaning. In the context of a Gregorian year, the ISO week has no meaning. Users should avoid
mixing Gregorian and ISO date specifications.

« In a conversion from string to t imestamp, millisecond (MS) or microsecond (US) values are used as
the seconds digits after the decimal point. For example to_timestamp (’12:3’, ’SS:MS’) isnot3
milliseconds, but 300, because the conversion counts it as 12 + 0.3 seconds. This means for the format
SS:MS, the input values 12:3, 12:30, and 12:300 specify the same number of milliseconds. To get
three milliseconds, one must use 12 : 003, which the conversion counts as 12 + 0.003 = 12.003 seconds.

Here is a more complex example: to_timestamp(’/15:12:02.020.001230",
"HH:MI:SS.MS.US’) is 15 hours, 12 minutes, and 2 seconds + 20 milliseconds + 1230 microseconds
=2.021230 seconds.

+ to_char(..., "ID’)’s day of the week numbering matches the extract (isodow from ...)
function, but to_char (..., ’D’)’s does not match extract (dow from ...)’sday numbering.

* to_char (interval) formats HH and HH12 as shown on a 12-hour clock, i.e. zero hours and 36 hours
output as 12, while HH24 outputs the full hour value, which can exceed 23 for intervals.

Table 9-23 shows the template patterns available for formatting numeric values.

Table 9-23. Template Patterns for Numeric Formatting

Pattern Description

9 value with the specified number of digits

199

Chapter 9. Functions and Operators

Pattern Description

0 value with leading zeros

. (period) decimal point

, (comma) group (thousand) separator

PR negative value in angle brackets

S sign anchored to number (uses locale)

L currency symbol (uses locale)

D decimal point (uses locale)

G group separator (uses locale)

MI minus sign in specified position (if number < 0)
PL plus sign in specified position (if number > 0)
SG plus/minus sign in specified position

RN Roman numeral (input between 1 and 3999)
THoOr th ordinal number suffix

\Y% shift specified number of digits (see notes)
EEEE exponent for scientific notation

Usage notes for numeric formatting:

+ A sign formatted using SG, PL, or MI is not anchored to the number; for example, to_char (-12,
"MI9999’) produces '—- 12’ but to_char(-12, ’S9999’) produces * -12’. The Oracle im-
plementation does not allow the use of MI before 9, but rather requires that 9 precede MI.

» 9 results in a value with the same number of digits as there are 9s. If a digit is not available it outputs a
space.

« TH does not convert values less than zero and does not convert fractional numbers.
+ PL, SG, and TH are PostgreSQL extensions.

« v effectively multiplies the input values by 10~ n, where n is the number of digits following V. to_char
does not support the use of v combined with a decimal point (e.g., 99.9v99 is not allowed).

« EEEE (scientific notation) cannot be used in combination with any of the other formatting patterns or
modifiers other than digit and decimal point patterns, and must be at the end of the format string (e.g.,
9.99EEEE is a valid pattern).

Certain modifiers can be applied to any template pattern to alter its behavior. For example, FM9999 is the
9999 pattern with the FM modifier. Table 9-24 shows the modifier patterns for numeric formatting.

Table 9-24. Template Pattern Modifiers for Numeric Formatting

Modifier Description Example

FM prefix fill mode (suppress padding FM9999
blanks and zeroes)

200

Chapter 9. Functions and Operators

Modifier Description Example
TH suffix upper case ordinal number suffix | 999TH
th suffix lower case ordinal number suffix | 999th
Table 9-25 shows some examples of the use of the to_char function.

Table 9-25. to_char Examples

Expression Result

to_char (current_timestamp, "Tuesday , 06 05:39:18"
"Day, DD HH12:MI:SS’)

to_char (current_timestamp, "Tuesday, 6 05:39:18”
'FMDay, FMDD HH12:MI:SS’)

to_char(-0.1, 799.99") ’ -.10"
to_char(-0.1, "FM9.99") r-.17

to_char (0.1, "0.9") " 0.1’

to_char (12, 79990999.9") ! 0012.0"
to_char (12, "FM9990999.9") r0012.7

to_char (485, "9997) ! 4857

to_char (=485, "9997) " -4857

to_char (485, "9 9 97) "4 8 57

to_char (1485, ’9,999") " 1,485’

to_char (1485, 79G999") "1 4857
to_char(148.5, 7999.999") 7 148.500"
to_char(148.5, ’'FM999.999") 7148.5"
to_char(148.5, ’'FM999.990") 7148.500
to_char(148.5, 7999D999") " 148,500
to_char(3148.5, ’"9G999D999") "3 148,500
to_char (-485, 79993") "485-7

to_char (-485, "999MI’) "485-"

to_char (485, "999MI1’) r485 7

to_char (485, 'FM999MI’) 485"

to_char (485, ’'PL999’) "4+4857

to_char (485, 'SG999") " +4857

to_char (-485, ’'SG999") " —-485'

to_char (-485, 79SG99") "4-857

to_char (=485, ’'999PR’) " <485>"

to_char (485, 'L999") "DM 485

to_char (485, ’'RN’) ’ CDLXXXV'
to_char (485, ’FMRN') " CDLXXXV'

to_char (5.2, ’'FMRN') rvr

201

Chapter 9. Functions and Operators

Expression Result

to_char (482, ’'999th’) " 482nd’

to_char (485, ’'"Good number:"999") "Good number: 485’
to_char (485.8, "Pre: 485 Post: .800’
""Pre:"999" Post:" .999)

to_char (12, ’'99v999’) ’ 12000
to_char(12.4, "99v999') 712400
to_char(12.45, "99V9’) ’ 1257

to_char (0.0004859, ’"9.99EEEE’) " 4.86e-04"

9.9. Date/Time Functions and Operators

Table 9-27 shows the available functions for date/time value processing, with details appearing in the
following subsections. Table 9-26 illustrates the behaviors of the basic arithmetic operators (+, *, etc.).
For formatting functions, refer to Section 9.8. You should be familiar with the background information on
date/time data types from Section 8.5.

All the functions and operators described below that take t ime or t imestamp inputs actually come in two
variants: one that takes time with time zone or timestamp with time zone, and one that takes
time without time zone Or timestamp without time zone. For brevity, these variants are not
shown separately. Also, the + and « operators come in commutative pairs (for example both date + integer

and integer + date);

we show only one of each such pair.

Table 9-26. Date/Time Operators

Operator Example Result

+ date "2001-09-28" + date ’2001-10-05"
integer 7’

+ date "2001-09-28" + timestamp "2001-09-28
interval 1 hour’ 01:00:00"

+ date 72001-09-28’ + time |timestamp ’2001-09-28
703:00” 03:00:00"

+ interval '1 day’ + interval '1 day
interval ’1 hour’ 01:00:00"

+ timestamp ’2001-09-28 timestamp "2001-09-29
01:00" + interval ’23 00:00:00"
hours’

+ time ’01:00" + interval time 704:00:00'
"3 hours’

- - interval ’23 hours’ interval "-23:00:00"

- date ’2001-10-01’ - date |integer '3’ (days)
72001-09-28"

202

Chapter 9. Functions and Operators

Operator Example Result
- date ’2001-10-01" - date ’2001-09-24"
integer 7’
- date 72001-09-28" - timestamp ’2001-09-27
interval 1 hour’ 23:00:00"
- time 705:00" - time interval 702:00:00"
r03:00"
- time ’05:00’ - interval time ’03:00:00"
"2 hours’
- timestamp 2001-09-28 timestamp ’2001-09-28
23:00” - interval '23 00:00:00"
hours’
- interval '1 day’ - interval '1 day
interval ’1 hour’ -01:00:00"
- timestamp ’2001-09-29 interval 'l day
03:00" - timestamp 15:00:00"
72001-09-27 12:00"
* 900 * interval ’1 interval 00:15:00"
second’
* 21 % interval ’1 day’ interval ’'21 days’
* double precision 3.5’ * |interval ’03:30:00"
interval ’1 hour’
/ interval ’1 hour’ / interval 700:40:00"
double precision 1.5’
Table 9-27. Date/Time Functions
Function Return Type Description Example Result
age (timestamp, interval Subtract age (timestamp |43 years 9
timestamp) arguments, r2001-04-10", mons 27 days
producing a timestamp
“symbolic” result |’1957-06-13")
that uses years and
months
age (timestamp) interval Subtract from age (timestamp |43 years 8

current_date (at

midnight)

71957-06-13")

mons 3 days

clock_timestamp ()

time zone

timestamp with

Current date and
time (changes
during statement
execution); see
Section 9.9.4

current_date date

Current date; see
Section 9.9.4

203

Chapter 9. Functions and Operators

Function Return Type Description Example Result
current_time time with time |Current time of
zone day; see Section
994
current_timestamgtimestamp with |Current date and
time zone time (start of
current
transaction); see
Section 9.9.4
date_part (text, double Get subfield date_part (' hour|’20
timestamp) precision (equivalent to timestamp
extract); see 72001-02-16
Section 9.9.1 20:38:40")
date_part (text, double Get subfield date_part ('month3,
interval) precision (equivalent to interval ’2
extract); see years 3
Section 9.9.1 months’)
date_trunc (text, |timestamp Truncate to date_trunc (' houZ(01-02-16
timestamp) specified precision; | t imestamp 20:00:00
see also Section ’2001-02-16
99.2 20:38:40")
extract (field double Get subfield; see extract (hour 20
from timestamp) |precision Section 9.9.1 from timestamp
72001-02-16
20:38:40")
extract (field double Get subfield; see extract (month |3
from interval) precision Section 9.9.1 from interval
"2 years 3
months’)
isfinite (date) boolean Test for finite date |isfinite (date |true
(not +/-infinity) 72001-02-16")
isfinite (timestampoolean Test for finite time |isfinite (timestlampue
stamp (not ’2001-02-16
+/-infinity) 21:28:30")
isfinite (interval)boolean Test for finite isfinite (intervialrue
interval "4 hours’)
justify_days (intefiaterval Adjust interval so | justify_days (intkemval 5 days
30-day time '35 days’)
periods are
represented as
months

204

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

justify_hours (int

erndvrval

Adjust interval so
24-hour time
periods are
represented as days

Justify_hours (i

27 hours’)

It edara103:00: 00

justify_interval

fimeewna 1

Adjust interval
using
justify_days
and
justify_hours,
with additional
sign adjustments

Justify_interval
1l mon -1

hour’)

12(3 ntasrsra 1
23:00:00

localtime

time

Current time of
day; see Section
994

localtimestamp

timestamp

Current date and
time (start of
current
transaction); see
Section 9.9.4

now ()

timestamp with

time zone

Current date and
time (start of
current
transaction); see
Section 9.9.4

statement_timestsg

mpimestamp with

time zone

Current date and
time (start of
current statement);
see Section 9.9.4

timeofday ()

text

Current date and
time (like
clock_timestamp
but as a text
string); see Section
994

p

transaction_timegd

tampestamp with
time zone

Current date and
time (start of
current
transaction); see
Section 9.9.4

In addition to these functions, the SQL OVERLAPS operator is supported:

(startl,
(startl,

endl)
lengthl)

OVERLAPS

(startz,
OVERLAPS

(start2,

end?2)
length?2)

205

Chapter 9. Functions and Operators

This expression yields true when two time periods (defined by their endpoints) overlap, false when they
do not overlap. The endpoints can be specified as pairs of dates, times, or time stamps; or as a date, time,
or time stamp followed by an interval. When a pair of values is provided, either the start or the end can be
written first; OVERLAPS automatically takes the earlier value of the pair as the start. Each time period is
considered to represent the half-open interval start <= time < end, unless start and end are equal in
which case it represents that single time instant. This means for instance that two time periods with only
an endpoint in common do not overlap.

SELECT (DATE "2001-02-16", DATE ’"2001-12-21") OVERLAPS
(DATE "2001-10-30’, DATE ’'2002-10-30");

Result: true

SELECT (DATE ’2001-02-16’, INTERVAL ’100 days’) OVERLAPS
(DATE "2001-10-30’, DATE ’2002-10-30");

Result: false

SELECT (DATE ’2001-10-29", DATE ’2001-10-30") OVERLAPS
(DATE "2001-10-30’, DATE '2001-10-31");

Result: false

SELECT (DATE ’"2001-10-30", DATE ’"2001-10-30") OVERLAPS
(DATE "2001-10-30’, DATE '2001-10-31");

Result: true

When adding an interval value to (or subtracting an interval value from) a timestamp with
time zone value, the days component advances (or decrements) the date of the timestamp with
time zone by the indicated number of days. Across daylight saving time changes (with the session time
zone set to a time zone that recognizes DST), this means interval ’1 day’ does not necessarily
equal interval ’24 hours’. For example, with the session time zone set to CST7CDT, timestamp
with time zone 72005-04-02 12:00-07" + interval ’1 day’ will produce timestamp
with time zone ’2005-04-03 12:00-06’, while adding interval ’24 hours’ to the same
initial timestamp with time zone produces timestamp with time zone ’2005-04-03
13:00-06", as there is a change in daylight saving time at 2005-04-03 02:00 in time zone CST7CDT.

Note there can be ambiguity in the months returned by age because different months have a different
number of days. PostgreSQL’s approach uses the month from the earlier of the two dates when calculating
partial months. For example, age (2004-06-01", '2004-04-30") uses Apriltoyield1 mon 1 day,
while using May would yield 1 mon 2 days because May has 31 days, while April has only 30.

9.9.1. EXTRACT, date_part

EXTRACT (field FROM source)

The extract function retrieves subfields such as year or hour from date/time values. source must
be a value expression of type timestamp, time, or interval. (Expressions of type date are cast to
timestamp and can therefore be used as well.) field is an identifier or string that selects what field to
extract from the source value. The extract function returns values of type double precision. The
following are valid field names:

century

The century

206

Chapter 9. Functions and Operators

SELECT EXTRACT (CENTURY FROM TIMESTAMP ’'2000-12-16 12:21:13");
Result: 20
SELECT EXTRACT (CENTURY FROM TIMESTAMP ’'2001-02-16 20:38:40");
Result: 21

The first century starts at 0001-01-01 00:00:00 AD, although they did not know it at the time. This
definition applies to all Gregorian calendar countries. There is no century number 0, you go from
-1 century to 1 century. If you disagree with this, please write your complaint to: Pope, Cathedral
Saint-Peter of Roma, Vatican.

PostgreSQL releases before 8.0 did not follow the conventional numbering of centuries, but just
returned the year field divided by 100.

day
The day (of the month) field (1 - 31)

SELECT EXTRACT (DAY FROM TIMESTAMP ’'2001-02-16 20:38:40");
Result: 16

decade

The year field divided by 10

SELECT EXTRACT (DECADE FROM TIMESTAMP ’'2001-02-16 20:38:40");
Result: 200

dow

The day of the week as Sunday(0) to Saturday(6)

SELECT EXTRACT (DOW FROM TIMESTAMP ’2001-02-16 20:38:40");

Result: 5
Note that extract’s day of the week numbering differs from that of the to_char (..., 'D’")
function.

doy
The day of the year (1 - 365/366)

SELECT EXTRACT (DOY FROM TIMESTAMP ’'2001-02-16 20:38:40");
Result: 47

epoch

For date and timestamp values, the number of seconds since 1970-01-01 00:00:00 UTC (can be
negative); for interval values, the total number of seconds in the interval

SELECT EXTRACT (EPOCH FROM TIMESTAMP WITH TIME ZONE ’2001-02-16 20:38:40.12-08");
Result: 982384720.12

SELECT EXTRACT (EPOCH FROM INTERVAL ’'5 days 3 hours’);
Result: 442800

Here is how you can convert an epoch value back to a time stamp:

SELECT TIMESTAMP WITH TIME ZONE ’epoch’ + 982384720.12 » INTERVAL 'l second’;

(The to_timestamp function encapsulates the above conversion.)

207

Chapter 9. Functions and Operators

hour

The hour field (0 - 23)

SELECT EXTRACT (HOUR FROM TIMESTAMP ’2001-02-16 20:38:40");
Result: 20

isodow

The day of the week as Monday(1) to Sunday(7)

SELECT EXTRACT (ISODOW FROM TIMESTAMP ’'2001-02-18 20:38:40");
Result: 7

This is identical to dow except for Sunday. This matches the ISO 8601 day of the week numbering.
isoyear
The ISO 8601 year that the date falls in (not applicable to intervals)

SELECT EXTRACT (ISOYEAR FROM DATE ’'2006-01-01");
Result: 2005
SELECT EXTRACT (ISOYEAR FROM DATE ’'2006-01-02");
Result: 2006

Each ISO year begins with the Monday of the week containing the 4th of January, so in early January
or late December the ISO year may be different from the Gregorian year. See the week field for more
information.

This field is not available in PostgreSQL releases prior to 8.3.
microseconds

The seconds field, including fractional parts, multiplied by 1 000 000; note that this includes full
seconds

SELECT EXTRACT (MICROSECONDS FROM TIME ’17:12:28.5");
Result: 28500000

millennium
The millennium

SELECT EXTRACT (MILLENNIUM FROM TIMESTAMP ’2001-02-16 20:38:40");
Result: 3

Years in the 1900s are in the second millennium. The third millennium started January 1, 2001.

PostgreSQL releases before 8.0 did not follow the conventional numbering of millennia, but just
returned the year field divided by 1000.

milliseconds

The seconds field, including fractional parts, multiplied by 1000. Note that this includes full seconds.

SELECT EXTRACT (MILLISECONDS FROM TIME ’17:12:28.5");
Result: 28500

minute

The minutes field (0 - 59)

SELECT EXTRACT (MINUTE FROM TIMESTAMP ’2001-02-16 20:38:40");
Result: 38

208

Chapter 9. Functions and Operators

month

For t imestamp values, the number of the month within the year (1 - 12) ; for interval values the
number of months, modulo 12 (0 - 11)

SELECT EXTRACT (MONTH FROM TIMESTAMP ’2001-02-16 20:38:40");
Result: 2

SELECT EXTRACT (MONTH FROM INTERVAL ’'2 years 3 months’);
Result: 3

SELECT EXTRACT (MONTH FROM INTERVAL ’2 years 13 months’);
Result: 1

quarter
The quarter of the year (1 - 4) that the date is in

SELECT EXTRACT (QUARTER FROM TIMESTAMP ’'2001-02-16 20:38:40");
Result: 1

second
The seconds field, including fractional parts (0 - 59")
SELECT EXTRACT (SECOND FROM TIMESTAMP ’2001-02-16 20:38:40");
Result: 40
SELECT EXTRACT (SECOND FROM TIME ’17:12:28.5");
Result: 28.5

timezone

The time zone offset from UTC, measured in seconds. Positive values correspond to time zones east
of UTC, negative values to zones west of UTC.

timezone_hour

The hour component of the time zone offset
timezone_minute

The minute component of the time zone offset
week

The number of the week of the year that the day is in. By definition (ISO 8601), the first week of a
year contains January 4 of that year. (The ISO-8601 week starts on Monday.) In other words, the first
Thursday of a year is in week 1 of that year.

Because of this, it is possible for early January dates to be part of the 52nd or 53rd week of the
previous year. For example, 2005-01-01 is part of the 53rd week of year 2004, and 2006-01-01 is
part of the 52nd week of year 2005.

SELECT EXTRACT (WEEK FROM TIMESTAMP ’2001-02-16 20:38:40");
Result: 7

60 if leap seconds are implemented by the operating system

209

Chapter 9. Functions and Operators

year

The year field. Keep in mind there is no 0 AD, so subtracting BC years from AD years should be done
with care.

SELECT EXTRACT (YEAR FROM TIMESTAMP ’2001-02-16 20:38:40");
Result: 2001

The extract function is primarily intended for computational processing. For formatting date/time val-
ues for display, see Section 9.8.

The date_part function is modeled on the traditional Ingres equivalent to the SQL-standard function

extract:
date_part (' field’, source)

Note that here the rfield parameter needs to be a string value, not a name. The valid field names for
date_part are the same as for extract.

SELECT date_part (’day’, TIMESTAMP ’2001-02-16 20:38:40");
Result: 16

SELECT date_part ("hour’, INTERVAL "4 hours 3 minutes’);
Result: 4

9.9.2. date_trunc

The function date_trunc is conceptually similar to the t runc function for numbers.

date_trunc (’ field’, source)

source is a value expression of type t imestamp or interval. (Values of type date and time are cast
automatically to t imestamp or interval, respectively.) £ield selects to which precision to truncate the
input value. The return value is of type timestamp or interval with all fields that are less significant
than the selected one set to zero (or one, for day and month).

Valid values for field are:

microseconds
milliseconds
second
minute

hour

day

week

month
quarter

year

decade

century

210

Chapter 9. Functions and Operators

millennium

Examples:

SELECT date_trunc(’hour’, TIMESTAMP ’2001-02-16 20:38:407);
Result: 2001-02-16 20:00:00

SELECT date_trunc(’year’, TIMESTAMP ’'2001-02-16 20:38:40");
Result: 2001-01-01 00:00:00

9.9.3. AT TIME ZONE

The AT TIME ZONE construct allows conversions of time stamps to different time zones. Table 9-28
shows its variants.

Table 9-28. AT TIME ZONE Variants

Expression Return Type Description

timestamp without time zone |timestamp with time zone |Treat given time stamp without
AT TIME ZONE zone time zone as located in the
specified time zone

timestamp with time zone timestamp without time Convert given time stamp with
AT TIME ZONE zone zone time zone to the new time zone,
with no time zone designation

time with time zone AT time with time zone Convert given time with time
TIME ZONE zone zone to the new time zone

In these expressions, the desired time zone zone can be specified either as a text string (e.g., " PST’) or
as an interval (e.g., INTERVAL ’-08:00"). In the text case, a time zone name can be specified in any of
the ways described in Section 8.5.3.

Examples (assuming the local time zone is PST8PDT):

SELECT TIMESTAMP ’2001-02-16 20:38:40’" AT TIME ZONE ’MST’;
Result: 2001-02-16 19:38:40-08

SELECT TIMESTAMP WITH TIME ZONE ’2001-02-16 20:38:40-05" AT TIME ZONE ’'MST’;
Result: 2001-02-16 18:38:40

The first example takes a time stamp without time zone and interprets it as MST time (UTC-7), which
is then converted to PST (UTC-8) for display. The second example takes a time stamp specified in EST
(UTC-5) and converts it to local time in MST (UTC-7).

The function timezone (zone, timestamp) is equivalent to the SQL-conforming construct timestamp
AT TIME ZONE zone.

211

Chapter 9. Functions and Operators

9.9.4. Current Date/Time

PostgreSQL provides a number of functions that return values related to the current date and time. These
SQL-standard functions all return values based on the start time of the current transaction:

CURRENT_DATE

CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_TIME (precision)
CURRENT_TIMESTAMP (precision)
LOCALTIME

LOCALTIMESTAMP

LOCALTIME (precision)
LOCALTIMESTAMP (precision)

CURRENT_TIME and CURRENT_TIMESTAMP deliver values with time zone; LOCALTIME and
LOCALTIMESTAMP deliver values without time zone.

CURRENT_TIME, CURRENT_TIMESTAMP, LOCALTIME, and LOCALTIMESTAMP can optionally take a pre-
cision parameter, which causes the result to be rounded to that many fractional digits in the seconds field.
Without a precision parameter, the result is given to the full available precision.

Some examples:

SELECT CURRENT_TIME;
Result: 14:39:53.662522-05

SELECT CURRENT_DATE;
Result: 2001-12-23

SELECT CURRENT_TIMESTAMP;
Result: 2001-12-23 14:39:53.662522-05

SELECT CURRENT_TIMESTAMP (2) ;
Result: 2001-12-23 14:39:53.66-05

SELECT LOCALTIMESTAMP;
Result: 2001-12-23 14:39:53.662522

Since these functions return the start time of the current transaction, their values do not change during
the transaction. This is considered a feature: the intent is to allow a single transaction to have a consistent
notion of the “current” time, so that multiple modifications within the same transaction bear the same time
stamp.

Note: Other database systems might advance these values more frequently.

PostgreSQL also provides functions that return the start time of the current statement, as well as the actual
current time at the instant the function is called. The complete list of non-SQL-standard time functions is:

212

Chapter 9. Functions and Operators

transaction_timestamp ()
statement_timestamp ()
clock_timestamp ()
timeofday ()

now ()

transaction_timestamp () is equivalent to CURRENT_ TIMESTAMP, but is named to clearly reflect
what it returns. statement_timestamp () returns the start time of the current statement (more specif-
ically, the time of receipt of the latest command message from the client). statement_timestamp ()
and transaction_timestamp () return the same value during the first command of a transaction,
but might differ during subsequent commands. clock_timestamp () returns the actual current time,
and therefore its value changes even within a single SQL command. timeofday () is a historical Post-
greSQL function. Like clock_timestamp (), it returns the actual current time, but as a formatted text
string rather than a timestamp with time zone value. now () is a traditional PostgreSQL equivalent
to transaction_timestamp ().

All the date/time data types also accept the special literal value now to specify the current date and time
(again, interpreted as the transaction start time). Thus, the following three all return the same result:

SELECT CURRENT_TIMESTAMP;
SELECT now () ;
SELECT TIMESTAMP ’'now’; —-- incorrect for use with DEFAULT

Tip: You do not want to use the third form when specifying a pErauLT clause while creating a table.
The system will convert now to a timestamp as soon as the constant is parsed, so that when the
default value is needed, the time of the table creation would be used! The first two forms will not
be evaluated until the default value is used, because they are function calls. Thus they will give the
desired behavior of defaulting to the time of row insertion.

9.9.5. Delaying Execution
The following function is available to delay execution of the server process:

pg_sleep (seconds)

pg_sleep makes the current session’s process sleep until seconds seconds have elapsed. seconds is a
value of type double precision, so fractional-second delays can be specified. For example:

SELECT pg_sleep(1l.5);

Note: The effective resolution of the sleep interval is platform-specific; 0.01 seconds is a common
value. The sleep delay will be at least as long as specified. It might be longer depending on factors
such as server load.

213

Chapter 9.

Functions and Operators

Warning

Make sure that your session does not hold more locks than necessary when calling
pg_sleep. Otherwise other sessions might have to wait for your sleeping process,
slowing down the entire system.

9.10. Enum Support Functions

For enum types (described in Section 8.7), there are several functions that allow cleaner programming
without hard-coding particular values of an enum type. These are listed in Table 9-29. The examples
assume an enum type created as:

CREATE TYPE rainbow AS ENUM

(" red’,

Table 9-29. Enum Support Functions

"orange’,

'yellow’,

"green’,

"blue’,

Function

Description

Example

Example Result

enum_first (anyenum)

Returns the first value of
the input enum type

enum_first (null::rg

dmdabw)

enum_last (anyenum)

Returns the last value of
the input enum type

enum_last (null::rai

moowple

enum_range (anyenum)

Returns all values of the
input enum type in an
ordered array

enum_range (null: :ra

iftbemiy)orange, yellow,

enum_range (anyenum,

anyenum)

Returns the range
between the two given
enum values, as an
ordered array. The
values must be from the
same enum type. If the
first parameter is null,
the result will start with
the first value of the
enum type. If the second
parameter is null, the
result will end with the
last value of the enum

type.

enum_range (' orange’

"green’ : :rainbow)

H{:arairdEw,e 1 1low, gree

enum_range (NULL,

"green’ : :rainbow)

{red, orange, yellow,

enum_range (' orange’
NULL)

H{:areirdEow,e 1 1ow, gree

214

"purple’);

green, blue, pu

green}

n,blue,purple

Chapter 9. Functions and Operators

Notice that except for the two-argument form of enum_range, these functions disregard the specific value
passed to them; they care only about its declared data type. Either null or a specific value of the type can
be passed, with the same result. It is more common to apply these functions to a table column or function
argument than to a hardwired type name as suggested by the examples.

9.11. Geometric Functions and Operators

The geometric types point, box, 1seg, line, path, polygon, and circle have a large set of native
support functions and operators, shown in Table 9-30, Table 9-31, and Table 9-32.

Caution

Note that the “same as” operator, ~=, represents the usual notion of equality for the
point, box, polygon, and circle types. Some of these types also have an = op-
erator, but = compares for equal areas only. The other scalar comparison operators
(<= and so on) likewise compare areas for these types.

Table 9-30. Geometric Operators

Operator Description Example

+ Translation box " ((0,0), (1,1))’ +
point ’(2.0,0)’

- Translation box ' ((0,0),(1,1))" -
point ' (2.0,0)’

* Scaling/rotation box ' ((0,0),(1,1))" =
point ' (2.0,0)’

/ Scaling/rotation box ' ((0,0),(2,2))" /
point ’ (2.0,0)’

Point or box of intersection T((1,-1), (-1,1))"
" ((1,1),(-1,-1))"

Number of points in path or # 7((1,0),(0,1),(-1,0))"
polygon

@-@ Length or circumference @-@ path " ((0,0), (1,0))"

Qe Center @@ circle ' ((0,0),10)"

Closest point to first operand on | point ’ (0,0)’ ## lseg
second operand " ((2,0),(0,2))"

<-> Distance between circle 7 ((0,0),1)" <->

circle ' ((5,0),1)"

&& Overlaps? (One point in common |box ’ ((0,0), (1,1))’ &&
makes this true.) box ' ((0,0),(2,2))’
<< Is strictly left of? circle 7 ((0,0),1)" <<

circle " ((5,0),1)"

215

Chapter 9. Functions and Operators

Operator Description Example

>> Is strictly right of? circle 7 ((5,0),1)" >>
circle " ((0,0),1)’

&< Does not extend to the right of? |box ’ ((0,0), (1,1))’ &<
box " ((0,0), (2,2))"

&> Does not extend to the left of? box ’ ((0,0), (3,3))" &>
box " ((0,0), (2,2))"

<< Is strictly below? box ' ((0,0),(3,3))" <<|
box " ((3,4), (5,5))"

[>> Is strictly above? box ' ((3,4),(5,5))" [>>
box " ((0,0), (3,3))’

&< | Does not extend above? box ' ((0,0), (1,1))’ &<|
box " ((0,0), (2,2))"

| &> Does not extend below? box ' ((0,0), (3,3))" |&>
box " ((0,0), (2,2))"

<A Is below (allows touching)? circle 7 ((0,0),1)" <»
circle 7 ((0,5),1)"

>n Is above (allows touching)? circle 7 ((0,5),1)" >"
circle " ((0,0),1)"

24 Intersects? lseg " ((-1,0),(1,0))" 2#
box " ((-2,-2),(2,2))"’

?- Is horizontal? ?— lseg ' ((-1,0), (1,0))"

?- Are horizontally aligned? point ' (1,0)’ 2- point
" (0,0)’

2] Is vertical? ?] lseg ' ((-1,0),(1,0))’

2| Are vertically aligned? point ’ (0,1)’ 2| point
' (0,0)"

?2- Is perpendicular? lseg ' ((0,0),(0,1))" 2-
lseg ' ((0,0),(1,0))"

211 Are parallel? lseg 7 ((=1,0),(1,0))"
?1] lseg
f((=1,2),(1,2))"

@a> Contains? circle 7 ((0,0),2)" @>
point " (1,1)’

<@ Contained in or on? point 7 (1,1)’ <@ circle

" ((0,0),2)"

Same as?

polygon ’ ((0,0), (1,1))’
~= polygon
" ((1,1),(0,0))"

Note: Before PostgreSQL 8.2, the containment operators @¢> and <@ were respectively called ~ and
e. These names are still available, but are deprecated and will eventually be removed.

216

Table 9-31. Geometric Functions

Chapter 9. Functions and Operators

Function Return Type Description Example
area (object) double precision area area (box

" ((0,0),(1,1))")
center (object) point center center (box

" ((0,0),(1,2))")

diameter (circle)

double precision

diameter of circle

diameter (circle
" ((0,0),2.0)")

height (box)

double precision

vertical size of box

height (box
" ((0,0),(1,1))")

isclosed (path) boolean a closed path? isclosed (path
" ((0,0),(1,1),(2,0)
isopen (path) boolean an open path? isopen (path

"1(0,0),(1,1),(2,0)

length (object)

double precision

length

length (path
" ((=1,0),(1,0))")

npoints (path) int number of points npoints (path
"[(0,0),(1,1),(2,0)
npoints (polygon) int number of points npoints (polygon
" ((1,1),(0,0))")
pclose (path) path convert path to closed pclose (path
"1(0,0),(1,1),(2,0)
popen (path) path convert path to open popen (path

"((0,0),(1,1),(2,0)

radius (circle)

double precision

radius of circle

radius (circle
" ((0,0),2.0)")

width (box)

double precision

horizontal size of box

width (box
" ((0,0),(1,1))")

Table 9-32. Geometric Type Conversion Functions

Function Return Type Description Example

box (circle) box circle to box box (circle
’((0,0),2.0)")

box (point, point) box points to box box (point ’ (0,0)’,

point " (1,1)")

217

Chapter 9. Functions and Operators

Function Return Type Description Example
box (polygon) box polygon to box box (polygon
"((0,0),(1,1),(2,0)
circle (box) circle box to circle circle (box
" ((0,0),(1,1))")
circle (point, double |circle center and radius to circle (point
precision) circle ’(0,0)", 2.0)
circle (polygon) circle polygon to circle circle (polygon
"((0,0),(1,1),(2,0)
1seqg (box) lseg box diagonal to line lseqg (box
segment " ((-1,0),(1,0))")
lseg (point, point) lseg points to line segment lseg (point
"(-1,0)’, point
"(1,0)")
path (polygon) point polygon to path path (polygon
"((0,0),(1,1),(2,0)
point (double point construct point point (23.4, -44.5)
precision, double
precision)
point (box) point center of box point (box
" ((=1,0),(1,0))")
point (circle) point center of circle point (circle
"((0,0),2.0)")
point (1seq) point center of line segment point (lseg
" ((=1,0),(1,0))")
point (polygon) point center of polygon point (polygon
"((0,0),(1,1),(2,0)
polygon (box) polygon box to 4-point polygon |polygon (box
" ((0,0),(1,1))")
polygon (circle) polygon circle to 12-point polygon (circle
polygon " ((0,0),2.0)")
polygon (npts, circle) |polygon circle to npt s-point polygon (12, circle
polygon ’((0,0),2.0)")
polygon (path) polygon path to polygon polygon (path

" ((0,0),(1,1),(2,0)

It is possible to access the two component numbers of a point as though the point were an array with
indexes 0 and 1. For example, if t.p is a point column then SELECT p[0] FROM t retrieves the X
coordinate and UPDATE t SET p[l] =
box or 1seg can be treated as an array of two point values.

. . . changes the Y coordinate. In the same way, a value of type

218

~

~

Chapter 9. Functions and Operators

The area function works for the types box, circle, and path. The area function only
works on the path data type if the points in the path are non-intersecting. For example,
the path 7 ((0,0),(0,1),(2,1),(2,2),(1,2),(1,0), (0,0))"::PATH
will not work; however, the following visually identical path
" ((0,0),(0,1),(1,1),(1,2),(2,2),(2,1),(1,1),(1,0),(0,0))’::PATH

will work. If the concept of an intersecting versus non-intersecting path is confusing, draw both of the
above paths side by side on a piece of graph paper.

9.12. Network Address Functions and Operators

Table 9-33 shows the operators available for the cidr and inet types. The operators <<, <<=, >>, and
>>= test for subnet inclusion. They consider only the network parts of the two addresses (ignoring any
host part) and determine whether one network is identical to or a subnet of the other.

Table 9-33. cidr and inet Operators

Operator Description Example

< is less than inet 7192.168.1.5" <
inet 7192.168.1.6'

<= is less than or equal inet 7192.168.1.5" <=
inet 7192.168.1.5'

= equals inet ’192.168.1.5" =
inet 7192.168.1.5'

>= is greater or equal inet 7192.168.1.5" >=
inet 7192.168.1.5'

> is greater than inet 7192.168.1.5" >
inet 7192.168.1.4'

<> is not equal inet 7192.168.1.5" <>
inet ’192.168.1.4’

<< is contained within inet 7192.168.1.5" <<
inet 7192.168.1/24"

<<= is contained within or equals inet 7192.168.1/24' <<=
inet ’192.168.1/24'

>> contains inet 7192.168.1/24" >>
inet 7192.168.1.5'

>>= contains or equals inet 7192.168.1/24" >>=
inet 7192.168.1/24'

~ bitwise NOT ~ inet ’192.168.1.6'

& bitwise AND inet 7192.168.1.6" &
inet 70.0.0.255’

bitwise OR inet 7192.168.1.6" |

inet 70.0.0.255’

+ addition inet ’192.168.1.6" + 25

219

Chapter 9. Functions and Operators

Operator Description Example

- subtraction inet ’192.168.1.43" - 36

- subtraction inet 7192.168.1.43" -
inet 7192.168.1.19’

Table 9-34 shows the functions available for use with the cidr and inet types. The abbrev, host, and
text functions are primarily intended to offer alternative display formats.

Table 9-34. cidr and inet Functions

Function Return Type Description Example Result

abbrev (inet) text abbreviated display | abbrev (inet 10.1.0.0/16
format as text 710.1.0.0/16")

abbrev (cidr) text abbreviated display | abbrev (cidr 10.1/16
format as text ’10.1.0.0/16")

broadcast (inet) |inet broadcast address |broadcast (' 192.[116%. 1165 24/255/2
for network

family (inet) int extract family of family (’::17) 6
address; 4 for
IPv4, 6 for IPv6

host (inet) text extract IP address |host (7192.168.1|.5924768.1.5
as text

hostmask (inet) inet construct host hostmask (1192.1/68..230.29/30")
mask for network

masklen (inet) int extract netmask masklen(’192.168&4.5/24")
length

netmask (inet) inet construct netmask |netmask (/' 192.168.35 5/2%./255.0
for network

network (inet) cidr extract network network (192.168L92. 5/@81’).0/24
part of address

set_masklen (inet,|inet set netmask length | set_masklen (’ 192L9%8.48 5/2%/16

int) for inet value 16)

set_masklen (cidr,| cidr set netmask length | set_masklen (’ 192L9%8L.68 0020/ 1:G q

int) for cidr value 16)

text (inet) text extract IP address |text (inet 192.168.1.5/32

and netmask length
as text

7192.168.1.5")

Any cidr value can be cast to inet implicitly or explicitly; therefore, the functions shown above as
operating on inet also work on cidr values. (Where there are separate functions for inet and cidr, it
is because the behavior should be different for the two cases.) Also, it is permitted to cast an inet value
to cidr. When this is done, any bits to the right of the netmask are silently zeroed to create a valid cidr
value. In addition, you can cast a text value to inet or cidr using normal casting syntax: for example,

inet (expression) Or colname: :cidr.

Table 9-35 shows the functions available for use with the macaddr type. The function trunc (macaddr)

220

idr,

Chapter 9. Functions and Operators

returns a MAC address with the last 3 bytes set to zero. This can be used to associate the remaining prefix

with a manufacturer.

Table 9-35. macaddr Functions

Function

Return Type Description

Example

Result

trunc (macaddr)

macaddr set last 3 bytes to

Z€10

trunc (macaddr
712:34:56:78:90

12:34:56:00:00:
rab’)

The macaddr type also supports the standard relational operators (>, <=, etc.) for lexicographical order-

ing.

9.13. Text Search Functions and Operators

Table 9-36, Table 9-37 and Table 9-38 summarize the functions and operators that are provided for full
text searching. See Chapter 12 for a detailed explanation of PostgreSQL’s text search facility.

Table 9-36. Text Search Operators

Operator Description Example Result
Q@ t svector matches to_tsvector (' fat t
tsquery ? cats ate rats’) Q@
to_tsquery (’cat &
rat’)
eee deprecated synonym for |to_tsvector (’ fat t
@@ cats ate rats’)
@ee
to_tsquery (’'cat &
rat’)
| concatenate tsvectors |’a:1 ra’:1 "b":2,5
b:2"::tsvector || e’ :3 7d’ 4
fc:l d:2
b:3’::tsvector
&6& AND tsquerys fat | ("fat’ | ’"rat’)
together rat’ ::tsquery && & ’cat’
"cat’ ::tsquery
I OR tsquerys together |’ fat | ("fat’ | ’'rat’)
rat’ ::tsquery || | "cat’
fcat’ ::tsquery
1! negate a t squery 'l 'cat’::tsquery 17 cat’
Q> tsquery contains "cat’ ::tsquery @> |f

another ?

"cat &

rat’ ::tsquery

221

00

Chapter 9. Functions and Operators

Operator

Description

Example

Result

<@

?

tsquery is contained in

'cat &

"cat’ ::tsquery <@

rat’ ::tsquery

t

Note: The tsquery containment operators consider only the lexemes listed in the two queries, ignor-
ing the combining operators.

In addition to the operators shown in the table, the ordinary B-tree comparison operators (=, <, etc) are
defined for types tsvector and tsquery. These are not very useful for text searching but allow, for
example, unique indexes to be built on columns of these types.

Table 9-37. Text Search Functions

Function Return Type Description Example Result
to_tsvector ([tsvector reduce document to_tsvector (/ englfisth” ;2
config regconfig text to tsvector "The Fat "rat’ :3
, 1 document Rats’)
text)
length (tsvector) |integer number of lexemes | length (’ fat:2, 4|3
in tsvector cat:3
rat:5A’ : :tsvectlor)
setweight (tsvectortsvector assign weight to setweight (' fat:[2,dat’ : 3A
"char™) each element of cat:3 " fat’ :2A, 4A
tsvector rat :5B’ : :tsvectidmat’ : 5A
3
strip (tsvector) tsvector remove pOSitionS strip(’fat:2,4 |’cat’ ’'fat’
and weights from |cat:3 "rat’
tsvector rat:5A’ : :tsvectlor)
to_tsquery ([tsquery normalize words to_tsquery (’ engll'ifsdt’’, & ’rat’
config regconfig and convert to "The & Fat &
, 1 query text) tsquery Rats’)
plainto_tsquery ([tsquery produce tsquery |plainto_tsquery|(”&aglish’at”’
config regconfig ignoring "The Fat
, 1 query text) punctuation Rats’)
numnode (tsquery) |integer number of lexemes | numnode (’ (fat |5
plus operators in & rat) |
tsquery cat’ ::tsquery)
querytree (query |text get indexable part | querytree (' foo |’ foo’
tsquery) of a tsquery & !
bar’ ::tsquery)

222

Chapter 9. Functions and Operators

Function Return Type Description Example Result
ts_rank ([float4 rank document for |ts_rank (textsealr®h318
weights float4l[], query query)
1 vector
tsvector, query
tsquery [,
normalization
integer 1)
ts_rank_cd ([float4 rank document for |ts_rank_cd(’ {0.[15.01317
weights floatdl[], query using cover 0.2, 0.4,
] vector density 1.0}y,
tsvector, query textsearch,
tsquery [, query)
normalization
integer 1)
ts_headline ([text display a query ts_headline(’'x |x y z
config regconfig, match y z’,
] document text, 'z’ ::tsquery)
query tsquery [,
options text])
ts_rewrite (query |tsquery replace target with |ts_rewrite(’a |’b’ & ('foo’
tsquery, target substitute within & b’ ::tsquery, || "bar’)
tsquery, query "a’ i :tsquery,
substitute "foolbar’ ::tsquery)
tsquery)
ts_rewrite (query |tsquery replace using SELECT b’ & ('foo’
tsquery, select targets and ts_rewrite(’a | "bar’)
text) substitutes froma |& b’ ::tsquery,

SELECT command |’SELECT t,s

FROM aliases’)

get_current_ts_cqmiEgqonfig get default text get_current_ts_lceamdliish

search
configuration

tsvector_update_{

bsiieisclulYa

trigger function for
automatic
tsvector column
update

CREATE TRIGGER

tsvector_update
"pg_catalog.swe
title, body)

| trigger (tsvcol)
dish’,

tsvector_update_t

tihggerolumn ()

trigger function for
automatic
tsvector column
update

CREATE TRIGGER

tsvector_update
configcol,
title, body)

| trigger_column

Note: All the text search functions that accept an optional regconfig argument will use the configu-
ration specified by default_text_search_config when that argument is omitted.

223

tsvcol,

Chapter 9. Functions and Operators

The functions in Table 9-38 are listed separately because they are not usually used in everyday text search-
ing operations. They are helpful for development and debugging of new text search configurations.

Table 9-38. Text Search Debugging Functions

Function

Return Type

Description

Example

Result

ts_debug ([
config regconfig,
] document text,
OUT alias text,
OUT description
text, OUT token
text, OUT
dictionaries
regdictionaryl[],
OUT dictionary
regdictionary,

OUT lexemes

text[])

setof record

test a configuration

ts_debug (’engli
’The Brightest

supernovaes’)

stdsciiword, "Wor
all
ASCII", The, {end

d,

lish_stem}, en

ts_lexize (dict
regdictionary,

token text)

text[]

test a dictionary

ts_lexize ("engl

’stars’)

idtestlem’,

ts_parse (parser_njg
text, document
OUT tokid

ouT

text,
integer,

token text)

metof record

test a parser

ts_parse ('defau

"foo - bar’)

Ler,foo)

ts_parse (parser._ol
oid, document
text, OUT tokid
integer, OUT

token text)

gsetof record

test a parser

ts_parse (3722,

"foo - bar’)

(1, foo)

ts_token_type (par
text, OUT tokid
integer, OUT
alias text, OUT

description text)

seetimferecord

get token types
defined by parser

ts_token_type ('

delfaadday)word, "W
all ASCII")

ord,

ts_token_type (par
OUT tokid
ouT

OouT

oid,
integer,
alias text,

description text)

seetafi record

get token types
defined by parser

ts_token_type (3

7¢P)asciiword, "W
all ASCII")

ord,

224

Chapter 9. Functions and Operators

Function Return Type Description Example Result
ts_stat (sqlquery |setof record get statistics of a ts_stat (' SELECT| (foo,10,15)
text, [weights tsvector column |vector from

text,] OUT word apod’)

text, OUT ndoc

integer, OUT

nentry integer)

9.14. XML Functions

The functions and function-like expressions described in this section operate on values of type xml.
Check Section 8.13 for information about the xm1 type. The function-like expressions xmlparse and
xmlserialize for converting to and from type xml are not repeated here. Use of many of these func-
tions requires the installation to have been built with configure --with-libxml.

9.14.1. Producing XML Content

A set of functions and function-like expressions are available for producing XML content from SQL data.
As such, they are particularly suitable for formatting query results into XML documents for processing in
client applications.

9.14.1.1. xmlcomment

xmlcomment (text)

The function xmlcomment creates an XML value containing an XML comment with the specified text
as content. The text cannot contain “~-" or end with a “-” so that the resulting construct is a valid XML
comment. If the argument is null, the result is null.

Example:

SELECT xmlcomment ("hello’);
xmlcomment

<!--hello——>

9.14.1.2. xmlconcat

xmlconcat (xmlI[, ...])

The function xm1lconcat concatenates a list of individual XML values to create a single value containing
an XML content fragment. Null values are omitted; the result is only null if there are no nonnull arguments.

225

Chapter 9. Functions and Operators

Example:

SELECT xmlconcat (' <abc/>", ’'<bar>foo</bar>’);

xmlconcat

<abc/><bar>foo</bar>

XML declarations, if present, are combined as follows. If all argument values have the same XML version
declaration, that version is used in the result, else no version is used. If all argument values have the
standalone declaration value “yes”, then that value is used in the result. If all argument values have a
standalone declaration value and at least one is “no”, then that is used in the result. Else the result will
have no standalone declaration. If the result is determined to require a standalone declaration but no
version declaration, a version declaration with version 1.0 will be used because XML requires an XML
declaration to contain a version declaration. Encoding declarations are ignored and removed in all cases.

Example:
SELECT xmlconcat (' <?xml version="1.1"?><foo/>’, ’<?xml version="1.1" standalone="no"?><bar/
xmlconcat

<?xml version="1.1"?><foo/><bar/>

9.14.1.3. xmlelement

xmlelement (name name [, xmlattributes (value [AS attname] [, ... 1)1 [, content, ...])

The xmlelement expression produces an XML element with the given name, attributes, and content.

Examples:

SELECT xmlelement (name foo);
xmlelement
SELECT xmlelement (name foo, xmlattributes(’xyz’ as bar));
xmlelement
<foo bar—"xyzt/>
SELECT xmlelement (name foo, xmlattributes (current_date as bar), ’'cont’, ’'ent’);
xmlelement

<foo bar="2007-01-26">content</foo>

226

Chapter 9. Functions and Operators

Element and attribute names that are not valid XML names are escaped by replacing the offending charac-
ters by the sequence _xHHHH_, where HHHH is the character’s Unicode codepoint in hexadecimal notation.
For example:

SELECT xmlelement (name "foo$bar", xmlattributes (’xyz’ as "a&b"));

xmlelement

<foo_x0024_bar a_x0026_b="xyz"/>

An explicit attribute name need not be specified if the attribute value is a column reference, in which case
the column’s name will be used as the attribute name by default. In other cases, the attribute must be given
an explicit name. So this example is valid:

CREATE TABLE test (a xml, b xml);
SELECT xmlelement (name test, xmlattributes(a, b)) FROM test;

But these are not:

SELECT xmlelement (name test, xmlattributes(’constant’), a, b) FROM test;
SELECT xmlelement (name test, xmlattributes (func(a, b))) FROM test;

Element content, if specified, will be formatted according to its data type. If the content is itself of type
xml, complex XML documents can be constructed. For example:

SELECT xmlelement (name foo, xmlattributes(’xyz’ as bar),
xmlelement (name abc),
xmlcomment (" test’),
xmlelement (name xyz));

xmlelement

<foo bar="xyz"><abc/><!--test--><xyz/></foo>

Content of other types will be formatted into valid XML character data. This means in particular that the
characters <, >, and & will be converted to entities. Binary data (data type bytea) will be represented in
base64 or hex encoding, depending on the setting of the configuration parameter xmlbinary. The particular
behavior for individual data types is expected to evolve in order to align the SQL and PostgreSQL data
types with the XML Schema specification, at which point a more precise description will appear.

9.14.1.4. xmlforest

xmlforest (content [AS name] [, ...])

The xm1forest expression produces an XML forest (sequence) of elements using the given names and
content.

227

Chapter 9. Functions and Operators

Examples:

SELECT xmlforest ("abc’ AS foo, 123 AS bar);

xmlforest

<foo>abc</foo><bar>123</bar>

SELECT xmlforest (table_name, column_name)
FROM information_schema.columns
WHERE table_schema = "pg_catalog’;

xmlforest

<table_name>pg_authid</table_name><column_name>rolname</column_name>
<table_name>pg_authid</table_name><column_name>rolsuper</column_name>

As seen in the second example, the element name can be omitted if the content value is a column reference,
in which case the column name is used by default. Otherwise, a name must be specified.

Element names that are not valid XML names are escaped as shown for xmlelement above. Similarly,
content data is escaped to make valid XML content, unless it is already of type xm1.

Note that XML forests are not valid XML documents if they consist of more than one element, so it might
be useful to wrap xmlforest expressions in xmlelement.

9.14.1.5. xmlpi

xmlpi (name target [, content])

The xm1pi expression creates an XML processing instruction. The content, if present, must not contain
the character sequence 2>.

Example:

SELECT xmlpi (name php, ’"echo "hello world";’);

<?php echo "hello world";?>

9.14.1.6. xmlroot

xmlroot (xml, version text | no value [, standalone yes|no|no value])

228

Chapter 9. Functions and Operators

The xmlroot expression alters the properties of the root node of an XML value. If a version is specified,
it replaces the value in the root node’s version declaration; if a standalone setting is specified, it replaces
the value in the root node’s standalone declaration.

SELECT xmlroot (xmlparse (document ’<?xml version="1.1"?><content>abc</content>’),
version ’1.0’, standalone yes);

xmlroot

<?xml version="1.0" standalone="yes"?>
<content>abc</content>

9.14.1.7. xmlagg

xmlagg (xml)

The function xmlagg is, unlike the other functions described here, an aggregate function. It concatenates
the input values to the aggregate function call, much like xm1concat does, except that concatenation oc-
curs across rows rather than across expressions in a single row. See Section 9.18 for additional information
about aggregate functions.

Example:

CREATE TABLE test (y int, x xml);
INSERT INTO test VALUES (1, ’'<foo>abc</foo>');
INSERT INTO test VALUES (2, ’'<bar/>');
SELECT xmlagg(x) FROM test;
xmlagg

<foo>abc</foo><bar/>

To determine the order of the concatenation, an ORDER BY clause may be added to the aggregate call as
described in Section 4.2.7. For example:

SELECT xmlagg(x ORDER BY y DESC) FROM test;
xmlagg

<bar/><foo>abc</foo>

The following non-standard approach used to be recommended in previous versions, and may still be
useful in specific cases:

SELECT xmlagg(x) FROM (SELECT x FROM test ORDER BY y DESC) AS tab;
xmlagg

<bar/><foo>abc</foo>

229

Chapter 9. Functions and Operators

9.14.1.8. XML Predicates

xml IS DOCUMENT

The expression IS DOCUMENT returns true if the argument XML value is a proper XML document, false
if it is not (that is, it is a content fragment), or null if the argument is null. See Section 8.13 about the
difference between documents and content fragments.

9.14.2. Processing XML

To process values of data type xm1, PostgreSQL offers the function xpath, which evaluates XPath 1.0
expressions.

xpath (xpath, xml[, nsarray])
The function xpath evaluates the XPath expression xpath against the XML value xm1. It returns an array
of XML values corresponding to the node set produced by the XPath expression.

The second argument must be a well formed XML document. In particular, it must have a single root node
element.

The third argument of the function is an array of namespace mappings. This array should be a two-
dimensional array with the length of the second axis being equal to 2 (i.e., it should be an array of arrays,
each of which consists of exactly 2 elements). The first element of each array entry is the namespace name
(alias), the second the namespace URL. It is not required that aliases provided in this array are the same
that those being used in the XML document itself (in other words, both in the XML document and in the
xpath function context, aliases are local).

Example:

SELECT xpath (’//my:a/text()’, ’'<my:a xmlns:my="http://example.com">test</my:a>’,
ARRAY [ARRAY ['my’, ’'http://example.com’]1]);

How to deal with default (anonymous) namespaces:

SELECT xpath(’//mydefns:b/text()’, ’'test’,
ARRAY [ARRAY ['mydefns’, ’"http://example.com’]]);

230

Chapter 9. Functions and Operators

9.14.3. Mapping Tables to XML

The following functions map the contents of relational tables to XML values. They can be thought of as
XML export functionality:

table_to_xml (tbl regclass, nulls boolean, tableforest boolean, targetns text)
query_to_xml (query text, nulls boolean, tableforest boolean, targetns text)
cursor_to_xml (cursor refcursor, count int, nulls boolean,

tableforest boolean, targetns text)

The return type of each function is xm1.

table_to_xml maps the content of the named table, passed as parameter tbl. The regclass type
accepts strings identifying tables using the usual notation, including optional schema qualifications and
double quotes. query_to_xml executes the query whose text is passed as parameter query and maps
the result set. cursor_to_xml fetches the indicated number of rows from the cursor specified by the
parameter cursor. This variant is recommended if large tables have to be mapped, because the result
value is built up in memory by each function.

If tableforest is false, then the resulting XML document looks like this:
<tablename>
<row>
<columnnamel>data</columnnamel>
<columnname2>data</columnname2>
</row>

<row>

</row>

</tablename>
If tableforest is true, the result is an XML content fragment that looks like this:
<tablename>
<columnnamel>data</columnnamel>
<columnname2>data</columnname?2>
</tablename>

<tablename>

</tablename>

If no table name is available, that is, when mapping a query or a cursor, the string table is used in the
first format, row in the second format.

231

Chapter 9. Functions and Operators

The choice between these formats is up to the user. The first format is a proper XML document, which will
be important in many applications. The second format tends to be more useful in the cursor_to_xml
function if the result values are to be reassembled into one document later on. The functions for producing
XML content discussed above, in particular xmlelement, can be used to alter the results to taste.

The data values are mapped in the same way as described for the function xmlelement above.

The parameter nulls determines whether null values should be included in the output. If true, null values
in columns are represented as:

<columnname xsi:nil="true"/>

where xs1i is the XML namespace prefix for XML Schema Instance. An appropriate namespace declara-
tion will be added to the result value. If false, columns containing null values are simply omitted from the
output.

The parameter targetns specifies the desired XML namespace of the result. If no particular namespace
is wanted, an empty string should be passed.

The following functions return XML Schema documents describing the mappings performed by the cor-
responding functions above:

table_to_xmlschema (tbl regclass, nulls boolean, tableforest boolean, targetns text)
query_to_xmlschema (query text, nulls boolean, tableforest boolean, targetns text)
cursor_to_xmlschema (cursor refcursor, nulls boolean, tableforest boolean, targetns text)

It is essential that the same parameters are passed in order to obtain matching XML data mappings and
XML Schema documents.

The following functions produce XML data mappings and the corresponding XML Schema in one docu-
ment (or forest), linked together. They can be useful where self-contained and self-describing results are
wanted:

table_to_xml_and_xmlschema (tbl regclass, nulls boolean, tableforest boolean, targetns text)
query_to_xml_and_xmlschema (query text, nulls boolean, tableforest boolean, targetns text)

In addition, the following functions are available to produce analogous mappings of entire schemas or the
entire current database:

schema_to_xml (schema name, nulls boolean, tableforest boolean, targetns text)
schema_to_xmlschema (schema name, nulls boolean, tableforest boolean, targetns text)
schema_to_xml_and_xmlschema (schema name, nulls boolean, tableforest boolean, targetns text)

database_to_xml (nulls boolean, tableforest boolean, targetns text)
database_to_xmlschema (nulls boolean, tableforest boolean, targetns text)
database_to_xml_and_xmlschema (nulls boolean, tableforest boolean, targetns text)

Note that these potentially produce a lot of data, which needs to be built up in memory. When requesting
content mappings of large schemas or databases, it might be worthwhile to consider mapping the tables
separately instead, possibly even through a cursor.

The result of a schema content mapping looks like this:

<schemaname>

232

Chapter 9. Functions and Operators

tablel-mapping

tableZ2-mapping

</schemaname>

where the format of a table mapping depends on the tableforest parameter as explained above.

The result of a database content mapping looks like this:

<dbname>
<schemalname>
</;égemalname>
<schema2name>

</schema2name>

</dbname>

where the schema mapping is as above.

As an example of using the output produced by these functions, Figure 9-1 shows an XSLT stylesheet that
converts the output of table_to_xml_and_xmlschema to an HTML document containing a tabular
rendition of the table data. In a similar manner, the results from these functions can be converted into
other XML-based formats.

Figure 9-1. XSLT stylesheet for converting SQL/XML output to HTML

<?xml version="1.0"7?>

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://www.w3.0rg/1999/xhtml"

<xsl:output method="xml"
doctype-system="http://www.w3.0rg/TR/xhtml1/DTD/xhtmll-strict.dtd"
doctype-public="-//W3C/DTD XHTML 1.0 Strict//EN"
indent="yes"/>

<xsl:template match="/*">
<xsl:variable name="schema" select="//xsd:schema"/>
<xsl:variable name="tabletypename"
select="S$schema/xsd:element [@name=name (current ())]/@type"/>
<xsl:variable name="rowtypename"
select="$schema/xsd:complexType [@name=Stabletypename] /xsd:sequence/xsd:el

233

Chapter 9. Functions and Operators

<html>
<head>
<title><xsl:value-of select="name (current ())"/></title>
</head>
<body>
<table>
<tr>
<xsl:for-each select="$schema/xsd:complexType|[@name=$rowtypename] /xsd:sequence/
<th><xsl:value-of select="."/></th>
</xsl:for-each>
</tr>

<xsl:for—-each select="row">
<tr>
<xsl:for-each select="x">
<td><xsl:value-of select="."/></td>
</xsl:for-each>
</tr>
</xsl:for-each>
</table>
</body>
</html>
</xsl:template>

</xsl:stylesheet>

9.15. Sequence Manipulation Functions

This section describes PostgreSQL’s functions for operating on sequence objects. Sequence objects (also
called sequence generators or just sequences) are special single-row tables created with CREATE SE-
QUENCE. A sequence object is usually used to generate unique identifiers for rows of a table. The se-
quence functions, listed in Table 9-39, provide simple, multiuser-safe methods for obtaining successive
sequence values from sequence objects.

Table 9-39. Sequence Functions

Function Return Type Description

currval (regclass) bigint Return value most recently
obtained with nextval for
specified sequence

lastval() bigint Return value most recently
obtained with nextval for any
sequence

nextval (regclass) bigint Advance sequence and return
new value

234

Chapter 9. Functions and Operators

Function Return Type Description

setval (regclass, bigint) bigint Set sequence’s current value
setval (regclass, bigint, bigint Set sequence’s current value and
boolean) is_called flag

The sequence to be operated on by a sequence function is specified by a regclass argument, which is
simply the OID of the sequence in the pg_class system catalog. You do not have to look up the OID
by hand, however, since the regclass data type’s input converter will do the work for you. Just write
the sequence name enclosed in single quotes so that it looks like a literal constant. For compatibility with
the handling of ordinary SQL names, the string will be converted to lower case unless it contains double
quotes around the sequence name. Thus:

nextval (' foo’) operates on sequence foo
nextval (' FOO’) operates on sequence foo
nextval (" "Foo"') operates on sequence Foo

The sequence name can be schema-qualified if necessary:

nextval ('myschema.foo’) operates on myschema.foo
nextval (! "myschema".foo’) same as above
nextval (' foo’) searches search path for foo

See Section 8.16 for more information about regclass.

Note: Before PostgreSQL 8.1, the arguments of the sequence functions were of type text, not
regclass, and the above-described conversion from a text string to an OID value would happen
at run time during each call. For backwards compatibility, this facility still exists, but internally it is now
handled as an implicit coercion from text t0 regclass before the function is invoked.

When you write the argument of a sequence function as an unadorned literal string, it becomes a
constant of type regclass. Since this is really just an OID, it will track the originally identified sequence
despite later renaming, schema reassignment, etc. This “early binding” behavior is usually desirable
for sequence references in column defaults and views. But sometimes you might want “late binding”
where the sequence reference is resolved at run time. To get late-binding behavior, force the constant
to be stored as a text constant instead of regclass:

nextval (! foo’ : :text) foo 1is looked up at runtime

Note that late binding was the only behavior supported in PostgreSQL releases before 8.1, so you
might need to do this to preserve the semantics of old applications.

Of course, the argument of a sequence function can be an expression as well as a constant. If it is a
text expression then the implicit coercion will result in a run-time lookup.

The available sequence functions are:

nextval

Advance the sequence object to its next value and return that value. This is done atomically: even if
multiple sessions execute nextval concurrently, each will safely receive a distinct sequence value.

235

Chapter 9. Functions and Operators

currval

Return the value most recently obtained by nextval for this sequence in the current session. (An
error is reported if nextval has never been called for this sequence in this session.) Because this
is returning a session-local value, it gives a predictable answer whether or not other sessions have
executed nextval since the current session did.

lastval

Return the value most recently returned by nextval in the current session. This function is identical
to currval, except that instead of taking the sequence name as an argument it fetches the value of
the last sequence used by nextval in the current session. It is an error to call 1astval if nextval
has not yet been called in the current session.

setval

Reset the sequence object’s counter value. The two-parameter form sets the sequence’s last_value
field to the specified value and sets its is_called field to true, meaning that the next nextval
will advance the sequence before returning a value. The value reported by currval is also set to the
specified value. In the three-parameter form, is_called can be set to either true or false. true
has the same effect as the two-parameter form. If it is set to false, the next nextval will return
exactly the specified value, and sequence advancement commences with the following nextval.
Furthermore, the value reported by currval is not changed in this case (this is a change from pre-
8.3 behavior). For example,

SELECT setval ('’ foo’, 42); Next nextval will return 43
SELECT setval (’ foo’, 42, true); Same as above
SELECT setval(’foo’, 42, false); Next nextval will return 42

The result returned by setval is just the value of its second argument.

If a sequence object has been created with default parameters, successive nextval calls will return suc-
cessive values beginning with 1. Other behaviors can be obtained by using special parameters in the
CREATE SEQUENCE command; see its command reference page for more information.

Important: To avoid blocking concurrent transactions that obtain numbers from the same sequence,
a nextval operation is never rolled back; that is, once a value has been fetched it is considered used,
even if the transaction that did the nextval later aborts. This means that aborted transactions might
leave unused “holes” in the sequence of assigned values. setval operations are never rolled back,
either.

9.16. Conditional Expressions

This section describes the SQL-compliant conditional expressions available in PostgreSQL.

Tip: If your needs go beyond the capabilities of these conditional expressions, you might want to
consider writing a stored procedure in a more expressive programming language.

236

Chapter 9. Functions and Operators

9.16.1. cASE

The SQL caASE expression is a generic conditional expression, similar to if/else statements in other pro-
gramming languages:

CASE WHEN condition THEN result
[WHEN ...]
[ELSE result]

END

CASE clauses can be used wherever an expression is valid. Each condition is an expression that returns
a boolean result. If the condition’s result is true, the value of the CASE expression is the result that
follows the condition, and the remainder of the CASE expression is not processed. If the condition’s result
is not true, any subsequent WHEN clauses are examined in the same manner. If no WHEN condition yields
true, the value of the CASE expression is the result of the ELSE clause. If the ELSE clause is omitted and
no condition is true, the result is null.

An example:

SELECT x FROM test;

a
1
2
3
SELECT a,
CASE WHEN a=1 THEN ’one’
WHEN a=2 THEN ’two’
ELSE ’other’
END
FROM test;
a | case
I
1 | one
2 | two
3 | other

The data types of all the result expressions must be convertible to a single output type. See Section 10.5
for more details.

There is a “simple” form of CASE expression that is a variant of the general form above:

CASE expression
WHEN value THEN result
[WHEN ...]
[ELSE result]

END

237

Chapter 9. Functions and Operators

The first expression is computed, then compared to each of the value expressions in the WHEN clauses
until one is found that is equal to it. If no match is found, the result of the ELSE clause (or a null value)
is returned. This is similar to the switch statement in C.

The example above can be written using the simple CASE syntax:

SELECT a,
CASE a WHEN 1 THEN ’one’
WHEN 2 THEN ’two’
ELSE ’other’
END
FROM test;

a | case
.

1 | one

2 | two

3 | other

A cASE expression does not evaluate any subexpressions that are not needed to determine the result. For
example, this is a possible way of avoiding a division-by-zero failure:

SELECT ... WHERE CASE WHEN x <> 0 THEN y/x > 1.5 ELSE false END;

9.16.2. COALESCE
COALESCE (value [, ...])

The coaLESCE function returns the first of its arguments that is not null. Null is returned only if all
arguments are null. It is often used to substitute a default value for null values when data is retrieved for
display, for example:

SELECT COALESCE (description, short_description, ’ (none)’)

Like a CASE expression, COALESCE only evaluates the arguments that are needed to determine the result;
that is, arguments to the right of the first non-null argument are not evaluated. This SQL-standard function
provides capabilities similar to NVL and IFNULL, which are used in some other database systems.

9.16.3. NULLIF
NULLIF (valuel, valueZ2)

The NULLIF function returns a null value if valuel equals value2; otherwise it returns valuel. This
can be used to perform the inverse operation of the COALESCE example given above:

238

Chapter 9. Functions and Operators

SELECT NULLIF (value, ' (none)’)

In this example, if value is (none), null is returned, otherwise the value of value is returned.

9.16.4. GREATEST and LEAST
GREATEST (value [, ...])
LEAST (value [, ...])

The GREATEST and LEAST functions select the largest or smallest value from a list of any number of
expressions. The expressions must all be convertible to a common data type, which will be the type of the
result (see Section 10.5 for details). NULL values in the list are ignored. The result will be NULL only if
all the expressions evaluate to NULL.

Note that GREATEST and LEAST are not in the SQL standard, but are a common extension. Some other
databases make them return NULL if any argument is NULL, rather than only when all are NULL.

9.17. Array Functions and Operators

Table 9-40 shows the operators available for array types.

Table 9-40. Array Operators

Operator Description Example Result

= equal ARRAY[1.1,2.1,3.1]:Hnt[]
= ARRAY[1,2,3]

<> not equal ARRAY[1,2,3] <> t
ARRAY[1,2, 4]

< less than ARRAY[1,2,3] < t
ARRAY[1,2,4]

> greater than ARRAY([1,4,3] > t
ARRAY[1,2,4]

<= less than or equal ARRAY[1,2,3] <= t
ARRAY[1,2, 3]

>= greater than or equal ARRAY[1,4,3] >= t
ARRAY[1, 4, 3]

@e> contains ARRAY[1,4,3] @> t
ARRAY[3,1]

<@ is contained by ARRAY[2,7] <@ t

ARRAY([1,7,4,2,6]

239

Chapter 9. Functions and Operators

Operator Description Example Result
&& overlap (have elements |ARRAY[1,4,3] &s& t
in common) ARRAY[2,1]

array-to-array
concatenation

ARRAY[1,2,3] ||
ARRAY [4,5, 6]

{1,2,3,4,5,6}

array-to-array
concatenation

ARRAY[1,2,3] ||
ARRAY[[4,5,6],17,8,

({1,2,3},{4,5,6}, {7

911

| element-to-array 3 || ARRAY[4,5,6] {3,4,5,6}
concatenation
| array—to—element ARRAY [4,5,6] || 7 {4,5,6,7}

concatenation

Array comparisons compare the array contents element-by-element, using the default B-tree comparison
function for the element data type. In multidimensional arrays the elements are visited in row-major
order (last subscript varies most rapidly). If the contents of two arrays are equal but the dimensionality
is different, the first difference in the dimensionality information determines the sort order. (This is a
change from versions of PostgreSQL prior to 8.2: older versions would claim that two arrays with the
same contents were equal, even if the number of dimensions or subscript ranges were different.)

See Section 8.14 for more details about array operator behavior.

Table 9-41 shows the functions available for use with array types. See Section 8.14 for more information

and examples of the use of these functions.

Table 9-41. Array Functions

Function

Return Type

Description

Example

Result

array_append (anya

anyelement)

anyarray

rray,

append an element
to the end of an
array

array_append (AR
3)

RM’ [1172}} ’

array_cat (anyarra

anyarray)

anyarray

Yr

concatenate two
arrays

array_cat (ARRAY]
ARRAY [4,5])

(,2,33,4,5}

array_ndims (anyaxy

int

ray)

returns the number
of dimensions of
the array

array_ndims (ARR
[4,5,6]1])

rx [[1,2,3],

array_dims (anyary

text
ay)

returns a text
representation of
array’s dimensions

array_dims (ARRA
[4,5,6]1)

Y12 R BI3]

array_fill (anyelsg
int[], [,
int[]])

anyarray

ment,

returns an array
initialized with
supplied value and
dimensions,
optionally with
lower bounds other
than 1

array_fil1l (7,
ARRAY [3],
ARRAY[2])

[2:41={7,7,7}

240

+8,9}}

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

array_length (anya
int)

int

rray,

returns the length
of the requested
array dimension

array_length (ar]
1)

ray[1l,2,3],

array_lower (anyat

int)

int

ray,

returns lower
bound of the
requested array
dimension

array_lower (' [0
1)

@1={1,2,3}" ::1n

array_prepend (any

anyarray)

anyarray

relement,

append an element
to the beginning of
an array

array_prepend (1l
ARRAY[2,3])

A1,2,3}

array_to_string (4

text)

text

nyarray,

concatenates array
elements using
supplied delimiter

array_to_string
2! 3]/ ’NAN’)

(BRREX"1~3

array_upper (anyary

int)

int

ray,

returns upper
bound of the
requested array
dimension

array_upper (ARR
1)

MY [1,2,3,4],

string_to_array (1
text)

text []

ext,

splits string into
array elements
using supplied
delimiter

string_to_array]

)

(= yyazy ~zz" ,

unnest (anyarray)

setof

anyelement

expand an array to
a set of rows

unnest (ARRAY[1,

2112 (2 rows)

See also Section 9.18 about the aggregate function array_agg for use with arrays.

9.18. Aggregate Functions

Aggregate functions compute a single result from a set of input values. The built-in aggregate functions
are listed in Table 9-42 and Table 9-43. The special syntax considerations for aggregate functions are
explained in Section 4.2.7. Consult Section 2.7 for additional introductory information.

Table 9-42. General-Purpose Aggregate Functions

Function

Argument Type(s) Return Type Description

any array of the argument

type

input values, including
nulls, concatenated into
an array

array_agg (expression)

241

Chapter 9.

Functions and Operators

Function

Argument Type(s)

Return Type

Description

avg (expression)

smallint, int,
bigint, real, double
precision, numeric,

or interval

numeric for any
integer-type argument,
double precision
for a floating-point
argument, otherwise the
same as the argument
data type

the average (arithmetic
mean) of all input values

bit_and (expression)

smallint, int,

bigint,orbit

same as argument data
type

the bitwise AND of all
non-null input values, or
null if none

bit_or (expression)

smallint, int,

bigint,orbit

same as argument data
type

the bitwise OR of all
non-null input values, or
null if none

bool bool true if all input values
bool_and (expression) are true, otherwise false
bool bool true if at least one input
bool_or (expression) value is true, otherwise
false
count (*) bigint number of input rows
count (expression) any bigint number of input rows
for which the value of
expression is not null
every (expression) bool bool equivalent to bool_and

max (expression)

any array, numeric,
string, or date/time type

same as argument type

maximum value of
expression across all
input values

min (expression)

any array, numeric,
string, or date/time type

same as argument type

minimum value of
expression across all
input values

string_agg (expressiq

delimiter)

text, text

ny

text

input values
concatenated into a
string, separated by
delimiter

sum (expression)

smallint, int,
bigint, real, double
precision, numeric,

or interval

bigint for smallint
or int arguments,
numeric for bigint
arguments, double
precision for
floating-point
arguments, otherwise
the same as the

argument data type

sum of expression

across all input values

242

Chapter 9. Functions and Operators

Function Argument Type(s) Return Type Description
xmlagg (expression) | xml xml concatenation of XML
values (see also Section
9.14.1.7)

It should be noted that except for count, these functions return a null value when no rows are selected. In
particular, sum of no rows returns null, not zero as one might expect, and array_agg returns null rather
than an empty array when there are no input rows. The coalesce function can be used to substitute zero
or an empty array for null when necessary.

Note: Boolean aggregates bool_and and bool_or correspond to standard SQL aggregates every
and any or some. As for any and some, it seems that there is an ambiguity built into the standard
syntax:

SELECT bl = ANY((SELECT b2 FROM t2 ...)) FROM tl ...;

Here any can be considered either as introducing a subquery, or as being an aggregate function, if
the subquery returns one row with a Boolean value. Thus the standard name cannot be given to these
aggregates.

Note: Users accustomed to working with other SQL database management systems might be dis-
appointed by the performance of the count aggregate when it is applied to the entire table. A query
like:

SELECT count (*) FROM sometable;

will be executed by PostgreSQL using a sequential scan of the entire table.

The aggregate functions array_agg, string_agg, and xmlagg, as well as similar user-defined aggre-
gate functions, produce meaningfully different result values depending on the order of the input values.
This ordering is unspecified by default, but can be controlled by writing an ORDER BY clause within the
aggregate call, as shown in Section 4.2.7. Alternatively, supplying the input values from a sorted subquery
will usually work. For example:

SELECT xmlagg(x) FROM (SELECT x FROM test ORDER BY y DESC) AS tab;

But this syntax is not allowed in the SQL standard, and is not portable to other database systems.

Table 9-43 shows aggregate functions typically used in statistical analysis. (These are separated out merely
to avoid cluttering the listing of more-commonly-used aggregates.) Where the description mentions N, it
means the number of input rows for which all the input expressions are non-null. In all cases, null is
returned if the computation is meaningless, for example when N is zero.

Table 9-43. Aggregate Functions for Statistics

Function Argument Type Return Type Description

corr (Y, X) double precision double precision correlation coefficient

243

Chapter 9. Functions and Operators

Function

Argument Type

Return Type

Description

covar_pop (Y, X)

double precision

double precision

population covariance

covar_samp (Y, X)

double precision

double precision

sample covariance

regr_avgx (Y, X)

double precision

double precision

average of the
independent variable
(sum (x) /N)

regr_avgy (Y, X)

double precision

double precision

average of the
dependent variable
(sum (v) /N)

regr_count (Y, X)

double precision

bigint

number of input rows in
which both expressions
are nonnull

regr_intercept (Y,
X)

double precision

double precision

y-intercept of the
least-squares-fit linear
equation determined by
the (X, v) pairs

regr_r2 (Y, X)

double precision

double precision

square of the correlation
coefficient

regr_slope (Y, X)

double precision

double precision

slope of the
least-squares-fit linear
equation determined by
the (X, Y) pairs

regr_sxx (Y, X)

double precision

double precision

sum(xX~2) -

sum (x) ~2/n (“sum of
squares” of the
independent variable)

regr_sxy (Y, X)

double precision

double precision

sum (X*Y)
x sum(Y) /N (“sum of
products” of
independent times
dependent variable)

- sum(X)

regr_syy (Y, X)

double precision

double precision

sum(y~2) -

sum (v) ~2/nN (“sum of
squares” of the
dependent variable)

stddev (expression)

smallint, int,
bigint, real, double
precision, or

numeric

double precision
for floating-point
arguments, otherwise

numeric

historical alias for

stddev_samp

stddev_pop (expressig

smallint, int,
Migint, real, double
precision, or

numeric

double precision
for floating-point
arguments, otherwise

numeric

population standard
deviation of the input
values

244

Chapter 9. Functions and Operators

Function

Argument Type

Return Type

Description

stddev_samp (expressi

smallint, int,
dri)gint, real, double
precision, or

numeric

double precision
for floating-point
arguments, otherwise

numeric

sample standard
deviation of the input
values

variance(expression

smallint, int,
bigint, real, double
precision, or

numeric

double precision
for floating-point
arguments, otherwise

numeric

historical alias for

var_samp

var_pop(expression)

smallint, int,
bigint, real, double
precision, or

numeric

double precision
for floating-point
arguments, otherwise

numeric

population variance of
the input values (square
of the population
standard deviation)

var_samp(expression

smallint, int,
bigint, real, double
precision, or

numeric

double precision
for floating-point
arguments, otherwise

numeric

sample variance of the
input values (square of
the sample standard
deviation)

9.19. Window Functions

Window functions provide the ability to perform calculations across sets of rows that are related to the
current query row. See Section 3.5 for an introduction to this feature.

The built-in window functions are listed in Table 9-44. Note that these functions must be invoked using
window function syntax; that is an OVER clause is required.

In addition to these functions, any built-in or user-defined aggregate function can be used as a window
function (see Section 9.18 for a list of the built-in aggregates). Aggregate functions act as window func-
tions only when an OVER clause follows the call; otherwise they act as regular aggregates.

Table 9-44. General-Purpose Window Functions

Function Return Type Description

row_number () bigint number of the current row within
its partition, counting from 1

rank () bigint rank of the current row with
gaps; same as row_number of its
first peer

dense_rank () bigint rank of the current row without
gaps; this function counts peer
groups

percent_rank () double precision relative rank of the current row:
(rank - 1)/ (total rows - 1)

245

Chapter 9. Functions and Operators

Function Return Type Description

cume_dist () double precision relative rank of the current row:
(number of rows preceding or
peer with current row) / (total

TOWS)
ntile (num_buckets integer integer ranging from 1 to the
integer) argument value, dividing the

partition as equally as possible

lag(value any [, offset same type as value returns value evaluated at the
integer [, default any]]) row that is of fset rows before
the current row within the
partition; if there is no such row,
instead return default. Both
offset and default are
evaluated with respect to the
current row. If omitted, offset
defaults to 1 and default to

null
lead (value any [, offset | same type as value returns value evaluated at the
integer [, default any]]) row that is offset rows after the

current row within the partition;
if there is no such row, instead
return default. Both offset
and default are evaluated with
respect to the current row. If
omitted, offset defaults to 1
and default to null

first_value (value any) same type as value returns value evaluated at the
row that is the first row of the
window frame

last_value (value any) same type as value returns value evaluated at the
row that is the last row of the
window frame

nth_value (value any, nth| same type as value returns value evaluated at the
integer) row that is the nt h row of the
window frame (counting from 1);
null if no such row

All of the functions listed in Table 9-44 depend on the sort ordering specified by the ORDER BY clause
of the associated window definition. Rows that are not distinct in the ORDER BY ordering are said to be
peers; the four ranking functions are defined so that they give the same answer for any two peer rows.

Note that first_value, last_value, and nth_value consider only the rows within the “window
frame”, which by default contains the rows from the start of the partition through the last peer of the
current row. This is likely to give unhelpful results for 1ast_value and sometimes also nth_value.
You can redefine the frame by adding a suitable frame specification (RANGE or ROWS) to the OVER clause.
See Section 4.2.8 for more information about frame specifications.

246

Chapter 9. Functions and Operators

When an aggregate function is used as a window function, it aggregates over the rows within the cur-
rent row’s window frame. An aggregate used with ORDER BY and the default window frame definition
produces a “running sum” type of behavior, which may or may not be what’s wanted. To obtain aggre-
gation over the whole partition, omit ORDER BY or use ROWS BETWEEN UNBOUNDED PRECEDING AND
UNBOUNDED FOLLOWING. Other frame specifications can be used to obtain other effects.

Note: The SQL standard defines a RESPECT NULLS Or IGNORE NULLS option for lead, lag,
first_value, last_value, and nth_value. This is not implemented in PostgreSQL: the behavior is
always the same as the standard’s default, namely rRespecT NuLLs. Likewise, the standard’s From
FIRST Of FROM LAST option for nth_value is not implemented: only the default From FIRST behavior
is supported. (You can achieve the result of FrRoM LaAST by reversing the orDER BY ordering.)

9.20. Subquery Expressions

This section describes the SQL-compliant subquery expressions available in PostgreSQL. All of the ex-
pression forms documented in this section return Boolean (true/false) results.

9.20.1. EXISTS
EXISTS (subquery)

The argument of EXISTS is an arbitrary SELECT statement, or subquery. The subquery is evaluated to
determine whether it returns any rows. If it returns at least one row, the result of EXTSTS is “true”; if the
subquery returns no rows, the result of EXISTs is “false”.

The subquery can refer to variables from the surrounding query, which will act as constants during any
one evaluation of the subquery.

The subquery will generally only be executed long enough to determine whether at least one row is
returned, not all the way to completion. It is unwise to write a subquery that has side effects (such as
calling sequence functions); whether the side effects occur might be unpredictable.

Since the result depends only on whether any rows are returned, and not on the contents of those rows, the
output list of the subquery is normally unimportant. A common coding convention is to write all EXISTS
tests in the form EXISTS (SELECT 1 WHERE ...). There are exceptions to this rule however, such as
subqueries that use INTERSECT.

This simple example is like an inner join on col2, but it produces at most one output row for each tabl
row, even if there are several matching tab2 rows:

SELECT coll
FROM tabl
WHERE EXISTS (SELECT 1 FROM tab2 WHERE col2 = tabl.col2);

247

Chapter 9. Functions and Operators

9.20.2. IN

expression IN (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result. The result of IN is “true” if any
equal subquery row is found. The result is “false” if no equal row is found (including the case where the
subquery returns no rows).

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one
right-hand row yields null, the result of the IN construct will be null, not false. This is in accordance with
SQL’s normal rules for Boolean combinations of null values.

As with EXISTS, it’s unwise to assume that the subquery will be evaluated completely.
row_constructor IN (subquery)

The left-hand side of this form of IN is a row constructor, as described in Section 4.2.12. The right-hand
side is a parenthesized subquery, which must return exactly as many columns as there are expressions
in the left-hand row. The left-hand expressions are evaluated and compared row-wise to each row of the
subquery result. The result of 1IN is “true” if any equal subquery row is found. The result is “false” if no
equal row is found (including the case where the subquery returns no rows).

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions. Two
rows are considered equal if all their corresponding members are non-null and equal; the rows are unequal
if any corresponding members are non-null and unequal; otherwise the result of that row comparison is
unknown (null). If all the per-row results are either unequal or null, with at least one null, then the result
of IN is null.

9.20.3. NOT IN

expression NOT IN (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result. The result of NOT 1IN is “true”
if only unequal subquery rows are found (including the case where the subquery returns no rows). The
result is “false” if any equal row is found.

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one
right-hand row yields null, the result of the NOT IN construct will be null, not true. This is in accordance
with SQL’s normal rules for Boolean combinations of null values.

As with EXISTS, it’s unwise to assume that the subquery will be evaluated completely.
row_constructor NOT IN (subquery)

The left-hand side of this form of NOT IN is a row constructor, as described in Section 4.2.12. The right-
hand side is a parenthesized subquery, which must return exactly as many columns as there are expressions
in the left-hand row. The left-hand expressions are evaluated and compared row-wise to each row of the
subquery result. The result of NOT IN is “true” if only unequal subquery rows are found (including the
case where the subquery returns no rows). The result is “false” if any equal row is found.

248

Chapter 9. Functions and Operators

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions. Two
rows are considered equal if all their corresponding members are non-null and equal; the rows are unequal
if any corresponding members are non-null and unequal; otherwise the result of that row comparison is
unknown (null). If all the per-row results are either unequal or null, with at least one null, then the result
of NOT 1IN is null.

9.20.4. ANY/SOME

expression operator ANY (subquery)

expression operator SOME (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result using the given operator,
which must yield a Boolean result. The result of ANY is “true” if any true result is obtained. The result is
“false” if no true result is found (including the case where the subquery returns no rows).

SOME is a synonym for ANY. IN is equivalent to = ANY.

Note that if there are no successes and at least one right-hand row yields null for the operator’s result,
the result of the ANY construct will be null, not false. This is in accordance with SQL’s normal rules for
Boolean combinations of null values.

As with EXISTS, it’s unwise to assume that the subquery will be evaluated completely.

row_constructor operator ANY (subquery)

row_constructor operator SOME (subquery)

The left-hand side of this form of ANY is a row constructor, as described in Section 4.2.12. The right-hand
side is a parenthesized subquery, which must return exactly as many columns as there are expressions
in the left-hand row. The left-hand expressions are evaluated and compared row-wise to each row of the
subquery result, using the given operator. The result of ANY is “true” if the comparison returns true for
any subquery row. The result is “false” if the comparison returns false for every subquery row (including
the case where the subquery returns no rows). The result is NULL if the comparison does not return true
for any row, and it returns NULL for at least one row.

See Section 9.21.5 for details about the meaning of a row-wise comparison.

9.20.5. ALL

expression operator ALL (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result using the given operator,
which must yield a Boolean result. The result of ALL is “true” if all rows yield true (including the case
where the subquery returns no rows). The result is “false” if any false result is found. The result is NULL
if the comparison does not return false for any row, and it returns NULL for at least one row.

NOT 1IN isequivalentto <> ALL.

As with EXISTS, it’s unwise to assume that the subquery will be evaluated completely.

249

Chapter 9. Functions and Operators

row_constructor operator ALL (subquery)

The left-hand side of this form of ALL is a row constructor, as described in Section 4.2.12. The right-hand
side is a parenthesized subquery, which must return exactly as many columns as there are expressions
in the left-hand row. The left-hand expressions are evaluated and compared row-wise to each row of the
subquery result, using the given operator. The result of ALL is “true” if the comparison returns true
for all subquery rows (including the case where the subquery returns no rows). The result is “false” if the
comparison returns false for any subquery row. The result is NULL if the comparison does not return false
for any subquery row, and it returns NULL for at least one row.

See Section 9.21.5 for details about the meaning of a row-wise comparison.

9.20.6. Row-wise Comparison

row_constructor operator (subquery)

The left-hand side is a row constructor, as described in Section 4.2.12. The right-hand side is a parenthe-
sized subquery, which must return exactly as many columns as there are expressions in the left-hand row.
Furthermore, the subquery cannot return more than one row. (If it returns zero rows, the result is taken to
be null.) The left-hand side is evaluated and compared row-wise to the single subquery result row.

See Section 9.21.5 for details about the meaning of a row-wise comparison.

9.21. Row and Array Comparisons

This section describes several specialized constructs for making multiple comparisons between groups
of values. These forms are syntactically related to the subquery forms of the previous section, but do
not involve subqueries. The forms involving array subexpressions are PostgreSQL extensions; the rest are
SQL-compliant. All of the expression forms documented in this section return Boolean (true/false) results.

9.21.1. IN

expression IN (value [, ...]1)

The right-hand side is a parenthesized list of scalar expressions. The result is “true” if the left-hand ex-
pression’s result is equal to any of the right-hand expressions. This is a shorthand notation for

expression = valuel
OR
expression = value2
OR

250

Chapter 9. Functions and Operators

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one
right-hand expression yields null, the result of the IN construct will be null, not false. This is in accordance
with SQL’s normal rules for Boolean combinations of null values.

9.21.2. NOT IN

expression NOT IN (value [, ...])

The right-hand side is a parenthesized list of scalar expressions. The result is “true” if the left-hand ex-
pression’s result is unequal to all of the right-hand expressions. This is a shorthand notation for

expression <> valuel
AND
expression <> valueZ
AND

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one
right-hand expression yields null, the result of the NOT IN construct will be null, not true as one might
naively expect. This is in accordance with SQL’s normal rules for Boolean combinations of null values.

Tip: x NOT IN y is equivalent to NOT (x IN y) in all cases. However, null values are much more
likely to trip up the novice when working with NoT 1N than when working with 1. It is best to express
your condition positively if possible.

9.21.3. ANY/SOME (array)

expression operator ANY (array expression)

expression operator SOME (array expression)

The right-hand side is a parenthesized expression, which must yield an array value. The left-hand expres-
sion is evaluated and compared to each element of the array using the given operator, which must yield
a Boolean result. The result of ANY is “true” if any true result is obtained. The result is “false” if no true
result is found (including the case where the array has zero elements).

If the array expression yields a null array, the result of ANY will be null. If the left-hand expression yields
null, the result of ANY is ordinarily null (though a non-strict comparison operator could possibly yield a
different result). Also, if the right-hand array contains any null elements and no true comparison result is
obtained, the result of ANY will be null, not false (again, assuming a strict comparison operator). This is
in accordance with SQL’s normal rules for Boolean combinations of null values.

SOME is a synonym for ANY.

251

Chapter 9. Functions and Operators

9.21.4. aLL (array)

expression operator ALL (array expression)

The right-hand side is a parenthesized expression, which must yield an array value. The left-hand expres-
sion is evaluated and compared to each element of the array using the given operator, which must yield
a Boolean result. The result of ALL is “true” if all comparisons yield true (including the case where the
array has zero elements). The result is “false” if any false result is found.

If the array expression yields a null array, the result of ALL will be null. If the left-hand expression yields
null, the result of ALL is ordinarily null (though a non-strict comparison operator could possibly yield a
different result). Also, if the right-hand array contains any null elements and no false comparison result is
obtained, the result of ALL will be null, not true (again, assuming a strict comparison operator). This is in
accordance with SQL’s normal rules for Boolean combinations of null values.

9.21.5. Row-wise Comparison

row_constructor operator row_constructor

Each side is a row constructor, as described in Section 4.2.12. The two row values must have the same
number of fields. Each side is evaluated and they are compared row-wise. Row comparisons are allowed
when the operatoris =, <>, <, <=, > or >=, or has semantics similar to one of these. (To be specific,
an operator can be a row comparison operator if it is a member of a B-tree operator class, or is the negator
of the = member of a B-tree operator class.)

The = and <> cases work slightly differently from the others. Two rows are considered equal if all their
corresponding members are non-null and equal; the rows are unequal if any corresponding members are
non-null and unequal; otherwise the result of the row comparison is unknown (null).

For the <, <=, > and >= cases, the row elements are compared left-to-right, stopping as soon as an
unequal or null pair of elements is found. If either of this pair of elements is null, the result of the row
comparison is unknown (null); otherwise comparison of this pair of elements determines the result. For
example, ROW (1, 2,NULL) < ROW (1,3, 0) yields true, not null, because the third pair of elements are
not considered.

Note: Prior to PostgreSQL 8.2, the <, <=, > and >= cases were not handled per SQL specification. A
comparison like Row (a,b) < ROW(c,d) was implementedasa < c aND b < dwhereas the correct
behavior is equivalentto a < ¢ OR (a = ¢ AND b < d).

row_constructor IS DISTINCT FROM row_constructor

This construct is similar to a <> row comparison, but it does not yield null for null inputs. Instead, any
null value is considered unequal to (distinct from) any non-null value, and any two nulls are considered
equal (not distinct). Thus the result will either be true or false, never null.

row_constructor IS NOT DISTINCT FROM row_constructor

252

Chapter 9. Functions and Operators

This construct is similar to a = row comparison, but it does not yield null for null inputs. Instead, any null
value is considered unequal to (distinct from) any non-null value, and any two nulls are considered equal
(not distinct). Thus the result will always be either true or false, never null.

Note: The SQL specification requires row-wise comparison to return NULL if the result depends on
comparing two NULL values or a NULL and a non-NULL. PostgreSQL does this only when comparing
the results of two row constructors or comparing a row constructor to the output of a subquery (as
in Section 9.20). In other contexts where two composite-type values are compared, two NULL field
values are considered equal, and a NULL is considered larger than a non-NULL. This is necessary in
order to have consistent sorting and indexing behavior for composite types.

9.22. Set Returning Functions

This section describes functions that possibly return more than one row. Currently the only functions in
this class are series generating functions, as detailed in Table 9-45 and Table 9-46.

Table 9-45. Series Generating Functions

Function Argument Type Return Type Description
generate_series (start|int Oor bigint setof int or setof Generate a series of
stop) bigint (same as values, from start to
argument type) stop with a step size of
one
generate_series (start/int or bigint setof int or setof Generate a series of
stop, step) bigint (same as values, from start to
argument type) stop with a step size of
step
generate_series (start|timestamp or setof timestamp or | Generate a series of
stop, step interval) timestamp with setof timestamp values, from start to
time zone with time zone stop with a step size of
(same as argument type) | step

When step is positive, zero rows are returned if start is greater than stop. Conversely, when step is
negative, zero rows are returned if start is less than stop. Zero rows are also returned for NULL inputs.
It is an error for step to be zero. Some examples follow:

SELECT * FROM generate_series(2,4);
generate_series

(3 rows)

253

SELECT % FROM generate_series(5,1,-2);

generate_series

(3 rows)

SELECT x FROM generate_series (4,3);
generate_series

Chapter 9. Functions and Operators

—— this example relies on the date-plus-integer operator
SELECT current_date + s.a AS dates FROM generate_series(0,14,7) AS s(a);

dates
2004-02-05
2004-02-12
2004-02-19
(3 rows)

SELECT x FROM generate_series(’2008-03-01 00:00’ ::timestamp,

2008-03-04 12:00",

generate_series

2008-03-01 00:00:00
2008-03-01 10:00:00
2008-03-01 20:00:00
2008-03-02 06:00:00
2008-03-02 16:00:00
2008-03-03 02:00:00
2008-03-03 12:00:00
2008-03-03 22:00:00
2008-03-04 08:00:00
(9 rows)

Table 9-46. Subscript Generating Functions

10 hours’);

Function Return Type

Description

generate_subscripts (array setof int

anyarray, dim int)

Generate a series comprising the
given array’s subscripts.

generate_subscripts (array setof int
anyarray, dim int, reverse

boolean)

Generate a series comprising the
given array’s subscripts. When
reverse is true, the series is
returned in reverse order.

generate_subscripts is a convenience function that generates the set of valid subscripts for the spec-
ified dimension of the given array. Zero rows are returned for arrays that do not have the requested dimen-

254

Chapter 9. Functions and Operators

sion, or for NULL arrays (but valid subscripts are returned for NULL array elements). Some examples
follow:

-— basic usage
SELECT generate_subscripts(’ {NULL,1,NULL, 2}’ ::int[], 1) AS s;

4
(4 rows)

—-— presenting an array, the subscript and the subscripted
—-— value requires a subquery
SELECT % FROM arrays;

{-1,-2}
{100,200, 300}
(2 rows)

SELECT a AS array, s AS subscript, als] AS value
FROM (SELECT generate_subscripts(a, 1) AS s, a FROM arrays) foo;

array | subscript | value
,,,,,,,,,,,,,,, TP
{-1,-2} | 1] -1
{-1,-2} \ 2| -2
{100,200,300} | 1| 100
{100,200,300} | 2 | 200
{100,200,300} | 3 300

(5 rows)

—-— unnest a 2D array
CREATE OR REPLACE FUNCTION unnest2 (anyarray)
RETURNS SETOF anyelement AS $$
select $1[1i][]]
from generate_subscripts($1,1) gl (i),
generate_subscripts($1,2) g2 (3);
$$ LANGUAGE sgl IMMUTABLE;
CREATE FUNCTION
postgres=# SELECT * FROM unnest2 (ARRAY[[1,2]1,1[3,411);
unnest?2

255

9.23. System Information Functions

Chapter 9. Functions and Operators

Table 9-47 shows several functions that extract session and system information.

In addition to the functions listed in this section, there are a number of functions related to the statistics
system that also provide system information. See Section 27.2.2 for more information.

Table 9-47. Session Information Functions

Name Return Type Description

current_catalog name name of current database (called
“catalog” in the SQL standard)

current_database () name name of current database

current_schemal ()] name name of current schema

current_schemas (boolean) name [] names of schemas in search path,
optionally including implicit
schemas

current_user name user name of current execution
context

current_query () text text of the currently executing
query, as submitted by the client
(might contain more than one
statement)

pg_backend_pid () int Process ID of the server process

attached to the current session

pg_listening_channels ()

setof text

channel names that the session is
currently listening on

inet_client_addr () inet address of the remote connection
inet_client_port () int port of the remote connection
inet_server_addr () inet address of the local connection
inet_server_port () int port of the local connection
pg_my_temp_schema () oid OID of session’s temporary
schema, or O if none
pPg_is_other_temp_schema (0id) | boolean is schema another session’s

temporary schema?

pg_postmaster_start_time ()

timestamp with time zone

server start time

pg_conf_load_time ()

timestamp with time zone

configuration load time

session user name

session_user name
user name equivalent to current_user
version () text PostgreSQL version information

Note: current_catalog, current_schema, current_user, session_user, and user have special
syntactic status in SQL: they must be called without trailing parentheses. (In PostgreSQL, parentheses
can optionally be used with current_schema, but not with the others.)

256

Chapter 9. Functions and Operators

The session_user is normally the user who initiated the current database connection; but superusers
can change this setting with SET SESSION AUTHORIZATION. The current_user is the user identifier
that is applicable for permission checking. Normally it is equal to the session user, but it can be changed
with SET ROLE. It also changes during the execution of functions with the attribute SECURITY DEFINER.
In Unix parlance, the session user is the “real user” and the current user is the “effective user”.

current_schema returns the name of the schema that is first in the search path (or a null value if the
search path is empty). This is the schema that will be used for any tables or other named objects that are
created without specifying a target schema. current_schemas (boolean) returns an array of the names
of all schemas presently in the search path. The Boolean option determines whether or not implicitly
included system schemas such as pg_catalog are included in the returned search path.

Note: The search path can be altered at run time. The command is:

SET search_path TO schema [, schema, ...]

pg_listening_channels returns a set of names of channels that the current session is listening to. See
LISTEN for more information.

inet_client_addr returns the IP address of the current client, and inet_client_port returns the
port number. inet_server_addr returns the IP address on which the server accepted the current con-
nection, and inet_server_port returns the port number. All these functions return NULL if the current
connection is via a Unix-domain socket.

pg_my_temp_schema returns the OID of the current session’s temporary schema, or zero if it has none
(because it has not created any temporary tables). pg_is_other_temp_schema returns true if the given
OID is the OID of another session’s temporary schema. (This can be useful, for example, to exclude other
sessions’ temporary tables from a catalog display.)

pPg_postmaster_start_time returns the timestamp with time zone when the server started.

pg_conf_load_time returns the timestamp with time zone when the server configuration files
were last loaded. (If the current session was alive at the time, this will be the time when the session itself
re-read the configuration files, so the reading will vary a little in different sessions. Otherwise it is the time
when the postmaster process re-read the configuration files.)

version returns a string describing the PostgreSQL server’s version.

Table 9-48 lists functions that allow the user to query object access privileges programmatically. See
Section 5.6 for more information about privileges.

Table 9-48. Access Privilege Inquiry Functions

Name Return Type Description
has_any_column_privilege (usefpoolean does user have privilege for any
table, privilege) column of table

257

Chapter 9. Functions and Operators

Name

Return Type

Description

has_any_column_privilege (tab

privilege)

llepolean

does current user have privilege
for any column of table

has_column_privilege (user, |boolean does user have privilege for
table, column, privilege) column
has_column_privilege (table, |boolean does current user have privilege
column, privilege) for column
has_database_privilege (user,|boolean does user have privilege for
database, privilege) database
has_database_privilege (databpseplean does current user have privilege
privilege) for database
has_foreign_data_wrapper_priybhdedearser, doesuserhavepﬁvﬂegefbr
fdw, privilege) foreign-data wrapper
has_foreign_data_wrapper_priphoedebfidw, does current user have privilege
privilege) for foreign-data wrapper
has_function_privilege (user,|boolean does user have privilege for
function, privilege) function
has_function_privilege (functfibaplean does current user have privilege
privilege) for function
has_language_privilege (user,|boolean doesuserhavepﬁvﬂegefor
language, privilege) language
has_language_privilege (languglheplean does current user have privilege
privilege) for language
has_schema_privilege (user, |boolean does user have privilege for
schema, privilege) schema
has_schema_privilege (schema,|boolean does current user have privilege
privilege) for schema
has_server_privilege (user, |boolean does user have privilege for
server, privilege) foreign server
has_server_privilege (server,|boolean doescunentuserhavepﬁvﬂege
privilege) for foreign server
has_sequence_privilege (user,|boolean doesuserhavepﬁvﬂegefbr
sequence, privilege) sequence
has_sequence_privilege (sequenbeplean doescunentuserhavelnivﬂege
privilege) for sequence
has_table_privilege (user, boolean does user have privilege for table
table, privilege)

has_table_privilege (table, |boolean does current user have privilege
privilege) for table
has_tablespace_privilege (userhoolean doesuserhavepﬁvﬂegefor
tablespace, privilege) tabkspace
has_tablespace_privilege (tabllespdesn does current user have privilege

privilege)

for tablespace

258

Chapter 9. Functions and Operators

Name Return Type Description

pg_has_role (user, role, boolean does user have privilege for role
privilege)

pg_has_role (role, boolean does current user have privilege
privilege) for role

has_table_privilege checks whether a user can access a table in a particular way. The user can
be specified by name or by OID (pg_authid.oid), or if the argument is omitted current_user
is assumed. The table can be specified by name or by OID. (Thus, there are actually six variants of
has_table_privilege, which can be distinguished by the number and types of their arguments.)
When specifying by name, the name can be schema-qualified if necessary. The desired access privilege
type is specified by a text string, which must evaluate to one of the values SELECT, INSERT, UPDATE,
DELETE, TRUNCATE, REFERENCES, or TRIGGER. Optionally, WITH GRANT OPTION can be added to a
privilege type to test whether the privilege is held with grant option. Also, multiple privilege types can be
listed separated by commas, in which case the result will be true if any of the listed privileges is held.
(Case of the privilege string is not significant, and extra whitespace is allowed between but not within
privilege names.) Some examples:

SELECT has_table_privilege ('myschema.mytable’, ’select’);

SELECT has_table_privilege ('’ joe’, ’'mytable’, ’INSERT, SELECT WITH GRANT OPTION’);

has_sequence_privilege checks whether a user can access a sequence in a particular way. The pos-
sibilities for its arguments are analogous to has_table_privilege. The desired access privilege type
must evaluate to one of USAGE, SELECT, or UPDATE.

has_any_column_privilege checks whether a user can access any column of a table in a particular
way. Its argument possibilities are analogous to has_table_privilege, except that the desired access
privilege type must evaluate to some combination of SELECT, INSERT, UPDATE, or REFERENCES. Note
that having any of these privileges at the table level implicitly grants it for each column of the table, so
has_any_column_privilege will always return true if has_table_privilege does for the same
arguments. But has_any_column_privilege also succeeds if there is a column-level grant of the priv-
ilege for at least one column.

has_column_privilege checks whether a user can access a column in a particular way. Its argument
possibilities are analogous to has_table_privilege, with the addition that the column can be specified
either by name or attribute number. The desired access privilege type must evaluate to some combination
of SELECT, INSERT, UPDATE, or REFERENCES. Note that having any of these privileges at the table level
implicitly grants it for each column of the table.

has_database_privilege checks whether a user can access a database in a particular way. Its
argument possibilities are analogous to has_table_privilege. The desired access privilege type must
evaluate to some combination of CREATE, CONNECT, TEMPORARY, or TEMP (which is equivalent to
TEMPORARY).

has_function_privilege checks whether a user can access a function in a particular way. Its argument
possibilities are analogous to has_table_privilege. When specifying a function by a text string rather
than by OID, the allowed input is the same as for the regprocedure data type (see Section 8.16). The
desired access privilege type must evaluate to EXECUTE. An example is:

259

Chapter 9. Functions and Operators

SELECT has_function_privilege (' joeuser’, ’'myfunc(int, text)’, ’execute’);

has_foreign_data_wrapper_privilege checks whether a user can access a foreign-data wrapper in
a particular way. Its argument possibilities are analogous to has_table_privilege. The desired access
privilege type must evaluate to USAGE.

has_language_privilege checks whether a user can access a procedural language in a particular way.
Its argument possibilities are analogous to has_table_privilege. The desired access privilege type
must evaluate to USAGE.

has_schema_privilege checks whether a user can access a schema in a particular way. Its argument
possibilities are analogous to has_table_privilege. The desired access privilege type must evaluate
to some combination of CREATE or USAGE.

has_server_privilege checks whether a user can access a foreign server in a particular way. Its
argument possibilities are analogous to has_table_privilege. The desired access privilege type must
evaluate to USAGE.

has_tablespace_privilege checks whether a user can access a tablespace in a particular way. Its
argument possibilities are analogous to has_table_privilege. The desired access privilege type must
evaluate to CREATE.

pg_has_role checks whether a user can access a role in a particular way. Its argument possibilities are
analogous to has_table_privilege. The desired access privilege type must evaluate to some combi-
nation of MEMBER or USAGE. MEMBER denotes direct or indirect membership in the role (that is, the right to
do SET ROLE), while USAGE denotes whether the privileges of the role are immediately available without
doing SET ROLE.

Table 9-49 shows functions that determine whether a certain object is visible in the current schema search
path. For example, a table is said to be visible if its containing schema is in the search path and no table
of the same name appears earlier in the search path. This is equivalent to the statement that the table can
be referenced by name without explicit schema qualification. To list the names of all visible tables:

SELECT relname FROM pg_class WHERE pg_table_is_visible (oid);

Table 9-49. Schema Visibility Inquiry Functions

Name Return Type Description

pg_conversion_is_visible (conydmadeand) is conversion visible in search
path

pg_function_is_visible (functidpooildan is function visible in search path

pg_operator_is_visible (operafdrooidan is operator visible in search path

pg_opclass_is_visible (opclass bod)lean is operator class visible in search
path

pg_table_is_visible (table_oid)boolean is table visible in search path

260

Chapter 9. Functions and Operators

Name Return Type Description

pg_ts_config_is_visible (confidoodean is text search configuration
visible in search path

pg_ts_dict_is_visible (dict_oildoolean is text search dictionary visible
in search path

pPg_ts_parser_is_visible (parseboddrean is text search parser visible in
search path
pg_ts_template_is_visible (tehbloodesml) is text search template visible in

search path

pPy_type_is_visible (type_oid) |boolean is type (or domain) visible in
search path

Each function performs the visibility check for one type of database object. Note that
pg_table_is_visible can also be used with views, indexes and sequences; pg_type_is_visible
can also be used with domains. For functions and operators, an object in the search path is visible if there
is no object of the same name and argument data type(s) earlier in the path. For operator classes, both
name and associated index access method are considered.

All these functions require object OIDs to identify the object to be checked. If you want to test an object by
name, it is convenient to use the OID alias types (regclass, regtype, regprocedure, regoperator
regconfig, or regdictionary), for example:

SELECT pg_type_is_visible ('myschema.widget’ ::regtype);

Note that it would not make much sense to test a non-schema-qualified type name in this way — if the
name can be recognized at all, it must be visible.

Table 9-50 lists functions that extract information from the system catalogs.

Table 9-50. System Catalog Information Functions

Name Return Type Description

format_type (type_oid, text get SQL name of a data type

typemod)

pg_get_keywords () setof record get list of SQL keywords and
their categories

pPg_get_constraintdef (constraintesitd) get definition of a constraint

pg_get_constraintdef (constraipntexitd, get definition of a constraint

pretty_bool)

PY_get_expr (expr_text, text decompile internal form of an
relation_oid) expression, assuming that any
Vars in it refer to the relation
indicated by the second
parameter

261

Chapter 9. Functions and Operators

Name Return Type Description
Pg_get_expr (expr_text, text decompile internal form of an
relation_oid, pretty_bool) expression, assuming that any

Vars in it refer to the relation
indicated by the second

parameter
pg_get_functiondef (func_oid) |text get definition of a function
pg_get_function_arguments (fupdext) get argument list of function’s

definition (with default values)

pg_get_function_identity_argpmexts (func_oid) get argument list to identify a
function (without default values)

pg_get_function_result (func_didext get RETURNS clause for function

pg_get_indexdef (index_oid) text get CREATE INDEX command
for index

pg_get_indexdef (index_oid, text get CREATE INDEX command

column_no, pretty_bool) for index, or definition of just

one index column when
column_no iS not zero

pg_get_ruledef (rule_oid) text get CREATE RULE command for
rule
pg_get_ruledef (rule_oid, text get CREATE RULE command for
pretty_bool) rule
pg_get_serial_sequence (table |da@at get name of the sequence that a
column_name) serial or bigserial column
uses
pg_get_triggerdef(trigger_|dikdt get CREATE [CONSTRAINT]
TRIGGER command for trigger
pg_get_triggerdef(trigger_|dikt get CREATE [CONSTRAINT]
pretty_bool) TRIGGER command for trigger
pg_get_userbyid (role_oid) name get role name with given OID
pg_get_viewdef (view_name) text get underlying SELECT
command for view (deprecated)
pg_get_viewdef (view_name, text get underlying SELECT
pretty_bool) command for view (deprecated)
pPg_get_viewdef (view_oid) text get underlying SELECT
command for view
pg_get_viewdef (view_oid, text get underlying SELECT
pretty_bool) command for view
pg_tablespace_databases (tablgsgatefbiaid get the set of database OIDs that

have objects in the tablespace

pg_typeof (any) regtype get the data type of any value

262

Chapter 9. Functions and Operators

format_type returns the SQL name of a data type that is identified by its type OID and possibly a type
modifier. Pass NULL for the type modifier if no specific modifier is known.

pg_get_keywords returns a set of records describing the SQL keywords recognized by the server. The
word column contains the keyword. The catcode column contains a category code: U for unreserved,
¢ for column name, T for type or function name, or R for reserved. The catdesc column contains a
possibly-localized string describing the category.

pPg_get_constraintdef, pg_get_indexdef,pg_get_ruledef,and pg_get_triggerdef, respec-
tively reconstruct the creating command for a constraint, index, rule, or trigger. (Note that this is a decom-
piled reconstruction, not the original text of the command.) pg_get_expr decompiles the internal form
of an individual expression, such as the default value for a column. It can be useful when examining the
contents of system catalogs. If the expression might contain Vars, specify the OID of the relation they refer
to as the second parameter; if no Vars are expected, zero is sufficient. pg_get_viewdef reconstructs the
SELECT query that defines a view. Most of these functions come in two variants, one of which can option-
ally “pretty-print” the result. The pretty-printed format is more readable, but the default format is more
likely to be interpreted the same way by future versions of PostgreSQL; avoid using pretty-printed output
for dump purposes. Passing false for the pretty-print parameter yields the same result as the variant that
does not have the parameter at all.

pg_get_functiondef returns a complete CREATE OR REPLACE FUNCTION statement for a function.
pg_get_function_arguments returns the argument list of a function, in the form it would need to
appear in within CREATE FUNCTION. pg_get_function_result similarly returns the appropriate
RETURNS clause for the function. pg_get_function_identity_arguments returns the argument list
necessary to identify a function, in the form it would need to appear in within ALTER FUNCTION, for
instance. This form omits default values.

pg_get_serial_sequence returns the name of the sequence associated with a column, or NULL if no
sequence is associated with the column. The first input parameter is a table name with optional schema,
and the second parameter is a column name. Because the first parameter is potentially a schema and
table, it is not treated as a double-quoted identifier, meaning it is lower cased by default, while the second
parameter, being just a column name, is treated as double-quoted and has its case preserved. The function
returns a value suitably formatted for passing to sequence functions (see Section 9.15). This association
can be modified or removed with ALTER SEQUENCE OWNED BY. (The function probably should have
been called pg_get_owned_sequence; its current name reflects the fact that it’s typically used with
serial or bigserial columns.)

pg_get_userbyid extracts a role’s name given its OID.

pg_tablespace_databases allows a tablespace to be examined. It returns the set of OIDs of databases
that have objects stored in the tablespace. If this function returns any rows, the tablespace is not empty
and cannot be dropped. To display the specific objects populating the tablespace, you will need to connect
to the databases identified by pg_tablespace_databases and query their pg_class catalogs.

pg_typeof returns the OID of the data type of the value that is passed to it. This can be helpful for
troubleshooting or dynamically constructing SQL queries. The function is declared as returning regtype,
which is an OID alias type (see Section 8.16); this means that it is the same as an OID for comparison
purposes but displays as a type name. For example:

SELECT pg_typeof (33);

pg_typeof

263

Chapter 9. Functions and Operators

integer
(1 row)

SELECT typlen FROM pg_type WHERE oid = pg_typeof (33);
typlen

The functions shown in Table 9-51 extract comments previously stored with the COMMENT command.
A null value is returned if no comment could be found for the specified parameters.

Table 9-51. Comment Information Functions

Name Return Type Description

col_description (table_oid, text get comment for a table column

column_number)

obj_description (object_oid, |text get comment for a database

catalog_name) object

obj_description (object_oid) |text get comment for a database
object (deprecated)

shobj_description (object_oid, | text get comment for a shared

catalog_name) database object

col_description returns the comment for a table column, which is specified by the OID of its table
and its column number. obj_description cannot be used for table columns since columns do not have
OIDs of their own.

The two-parameter form of obj_description returns the comment for a database
object specified by its OID and the name of the containing system catalog. For example,
obj_description (123456, 'pg_class’) would retrieve the comment for the table with OID
123456. The one-parameter form of obj_description requires only the object OID. It is deprecated
since there is no guarantee that OIDs are unique across different system catalogs; therefore, the wrong
comment might be returned.

shobj_description is used just like obj_description except it is used for retrieving comments on
shared objects. Some system catalogs are global to all databases within each cluster and their descriptions
are stored globally as well.

The functions shown in Table 9-52 provide server transaction information in an exportable form. The main
use of these functions is to determine which transactions were committed between two snapshots.

Table 9-52. Transaction IDs and snapshots

Name Return Type Description
txid_current () bigint get current transaction ID
txid_current_snapshot () txid_snapshot getcunentsnapshot

264

Chapter 9. Functions and Operators

Name Return Type

Description

hbt)gint

txid_snapshot_xmin (txid_snaps

get xmin of snapshot

txid_snapshot_xmax (txid_snapshbtiigint

get xmax of snapshot

txid_snapshot_xip (txid_snapshpsetof bigint

get in-progress transaction IDs in
snapshot

txid_visible_in_snapshot (bigidmgolean

txid_snapshot)

is transaction ID visible in
snapshot? (do not use with
subtransaction ids)

The internal transaction ID type (xid) is 32 bits wide and wraps around every 4 billion transactions.
However, these functions export a 64-bit format that is extended with an “epoch” counter so it will not
wrap around during the life of an installation. The data type used by these functions, txid_snapshot,
stores information about transaction ID visibility at a particular moment in time. Its components are

described in Table 9-53.

Table 9-53. Snapshot components

Name Description

xmin Earliest transaction ID (txid) that is still active.
All earlier transactions will either be committed
and visible, or rolled back and dead.

xmax First as-yet-unassigned txid. All txids greater than
or equal to this are not yet started as of the time of
the snapshot, and thus invisible.

xip_list Active txids at the time of the snapshot. The list

includes only those active txids between xmin and
xmax; there might be active txids higher than
xmax. A txid that is xmin <= txid < xmax and
not in this list was already completed at the time of
the snapshot, and thus either visible or dead
according to its commit status. The list does not
include txids of subtransactions.

txid_snapshot’s textual representation is xmin:

means xmin=10, xmax=20, xip_list=10, 14,

xmax:xip_list. For example 10:20:10,14,15
15.

9.24. System Administration Functions

Table 9-54 shows the functions available to query and alter run-time configuration parameters.

Table 9-54. Configuration Settings Functions

Name Return Type

Description

265

Chapter 9. Functions and Operators

Name Return Type Description

text get current value of setting

current_setting (setting_name)

set_config (setting_name, text set parameter and return new

new_value, is_local) value

The function current_setting yields the current value of the setting setting_name. It corresponds
to the SQL command SHOW. An example:

SELECT current_setting(’datestyle’);

current_setting

IS0, MDY
(1 row)

set_config sets the parameter setting_name to new_value. If is_local is true, the new value
will only apply to the current transaction. If you want the new value to apply for the current session, use
false instead. The function corresponds to the SQL command SET. An example:

SELECT set_config(’log_statement_stats’, 'off’, false);
set_config

off
(1 row)

The functions shown in Table 9-55 send control signals to other server processes. Use of these functions
is restricted to superusers.

Table 9-55. Server Signalling Functions

Name Return Type Description

pg_cancel_backend (pid int) |boolean Cancel a backend’s current query

pg_terminate_backend (pid boolean Terminate a backend

int)

pg_reload_conf () boolean Cause server processes to reload
their configuration files

pg_rotate_logfile () boolean Rotate server’s log file

Each of these functions returns t rue if successful and false otherwise.

pg_cancel_backend and pg_terminate_backend send signals (SIGINT or SIGTERM respectively)
to backend processes identified by process ID. The process ID of an active backend can be found from the
procpid column of the pg_stat_activity view, or by listing the postgres processes on the server

266

Chapter 9. Functions and Operators

(using ps on Unix or the Task Manager on Windows).

pg_reload_conf sends a SIGHUP signal to the server, causing configuration files to be reloaded by all
Server processes.

pg_rotate_logfile signals the log-file manager to switch to a new output file immediately. This works
only when the built-in log collector is running, since otherwise there is no log-file manager subprocess.

The functions shown in Table 9-56 assist in making on-line backups. These functions cannot be executed
during recovery. Use of the first three functions is restricted to superusers.

Table 9-56. Backup Control Functions

Name Return Type Description
pg_start_backup (label text |text Prepare for performing on-line
[, fast boolean]) backup
pg_stop_backup () text Finish performing on-line
backup
pg_switch_xlog () text Force switch to a new transaction
log file
pg_current_xlog_location() |text Get current transaction log write
location
text Get current transaction log insert
pg_current_xlog_insert_locatfion () location
text, integer Convert transaction log location
pg_xlogfile_name_offset (locafiion string to file name and decimal
text) byte offset within file
pg_xlogfile_name (location text Convert transaction log location
text) string to file name

pg_start_backup accepts an arbitrary user-defined label for the backup. (Typically this would be
the name under which the backup dump file will be stored.) The function writes a backup label file
(backup_label) into the database cluster’s data directory, performs a checkpoint, and then returns the
backup’s starting transaction log location as text. The user can ignore this result value, but it is provided
in case it is useful.

postgres=# select pg_start_backup(’label_goes_here’);
pg_start_backup

0/D4445B8
(1 row)

There is an optional second parameter of type boolean. If true, it specifies executing
pg_start_backup as quickly as possible. This forces an immediate checkpoint which will cause a
spike in I/O operations, slowing any concurrently executing queries.

pg_stop_backup removes the label file created by pg_start_backup, and creates a backup history
file in the transaction log archive area. The history file includes the label given to pg_start_backup,
the starting and ending transaction log locations for the backup, and the starting and ending times of the

267

Chapter 9. Functions and Operators

backup. The return value is the backup’s ending transaction log location (which again can be ignored).
After recording the ending location, the current transaction log insertion point is automatically advanced
to the next transaction log file, so that the ending transaction log file can be archived immediately to
complete the backup.

pg_switch_xlog moves to the next transaction log file, allowing the current file to be archived (assum-
ing you are using continuous archiving). The return value is the ending transaction log location + 1 within
the just-completed transaction log file. If there has been no transaction log activity since the last transac-
tion log switch, pg_switch_xlog does nothing and returns the start location of the transaction log file
currently in use.

pg_current_xlog_location displays the current transaction log write location in the same format
used by the above functions. Similarly, pg_current_xlog_insert_location displays the current
transaction log insertion point. The insertion point is the “logical” end of the transaction log at any instant,
while the write location is the end of what has actually been written out from the server’s internal buffers.
The write location is the end of what can be examined from outside the server, and is usually what you
want if you are interested in archiving partially-complete transaction log files. The insertion point is made
available primarily for server debugging purposes. These are both read-only operations and do not require
superuser permissions.

You can use pg_xlogfile_name_offset to extract the corresponding transaction log file name and
byte offset from the results of any of the above functions. For example:

postgres=# SELECT * FROM pg_xlogfile_name_offset (pg_stop_backup());
file_name | file_offset

__________________________ o

00000001000000000000000D | 4039624

(1 row)

Similarly, pg_xlogfile_name extracts just the transaction log file name. When the given transaction log
location is exactly at a transaction log file boundary, both these functions return the name of the preceding
transaction log file. This is usually the desired behavior for managing transaction log archiving behavior,
since the preceding file is the last one that currently needs to be archived.

For details about proper usage of these functions, see Section 24.3.

The functions shown in Table 9-57 provide information about the current status of the standby. These
functions may be executed during both recovery and in normal running.

Table 9-57. Recovery Information Functions

Name Return Type Description
pg_is_in_recovery () bool True if recovery is still in
progress.

268

Chapter 9. Functions and Operators

Name Return Type Description
text Get last transaction log location
pg_last_xlog_receive_locatioh () received and synced to disk by

streaming replication. While
streaming replication is in
progress this will increase
monotonically. But when
streaming replication is restarted
this will back off to the
replication starting position,
typically the beginning of the
WAL file containing the current
replay location. If recovery has
completed this will remain static
at the value of the last WAL
record received and synced to
disk during recovery. If
streaming replication is disabled,
or if it has not yet started, the
function returns NULL.

text Get last transaction log location
replayed during recovery. If
recovery is still in progress this
will increase monotonically. If
recovery has completed then this
value will remain static at the
value of the last WAL record
applied during that recovery.
When the server has been started
normally without recovery the
function returns NULL.

pg_last_xlog_replay_location|(

The functions shown in Table 9-58 calculate the disk space usage of database objects.

Table 9-58. Database Object Size Functions

Name Return Type Description

pg_column_size (any) int Number of bytes used to store a
particular value (possibly
compressed)

bigint Total disk space used by the

pg_total_relation_size (regclgss) table with the specified OID or
name, including all indexes and
TOAST data

269

Chapter 9. Functions and Operators

Name Return Type Description

pg_table_size (regclass) bigint Disk space used by the table
with the specified OID or name,
excluding indexes (but including
TOAST, free space map, and
visibility map)

pg_indexes_size (regclass) bigint Total disk space used by indexes
attached to the table with the
specified OID or name

pg_database_size (oid) bigint Disk space used by the database
with the specified OID

pg_database_size (name) bigint Disk space used by the database
with the specified name

pg_tablespace_size (oid) bigint Disk space used by the
tablespace with the specified
OID

pg_tablespace_size (name) bigint Disk space used by the
tablespace with the specified
name

pg_relation_size (relation bigint Disk space used by the specified

regclass, fork text) fork (main’, ’ fsm’ or ' vm’)
of the table or index with the
specified OID or name

pg_relation_size (relation bigint Shorthand for

regclass) pog_relation_size(...,
"main’)

pg_size_pretty (bigint) text Converts a size in bytes into a
human-readable format with size
units

pg_column_size shows the space used to store any individual data value.

pg_total_relation_size accepts the OID or name of a table or toast table, and returns the to-
tal on-disk space used for that table, including all associated indexes. This function is equivalent to

pg_table_size + pg_indexes_size.

pg_table_size accepts the OID or name of a table and returns the disk space needed for that table,
exclusive of indexes. (TOAST space, free space map, and visibility map are included.)

pg_indexes_size accepts the OID or name of a table and returns the total disk space used by all the
indexes attached to that table.

pg_database_size and pg_tablespace_size accept the OID or name of a database or tablespace,
and return the total disk space used therein.

pg_relation_size accepts the OID or name of a table, index or toast table, and returns the on-disk size
in bytes. Specifying “main’ or leaving out the second argument returns the size of the main data fork of
the relation. Specifying ’ £sm’ returns the size of the Free Space Map (see Section 54.3) associated with
the relation. Specifying ’ vm’ returns the size of the Visibility Map (see Section 54.4) associated with the

270

Chapter 9. Functions and Operators
relation. Note that this function shows the size of only one fork; for most purposes it is more convenient
to use the higher-level functions pg_total_relation_size Or pg_table_size.

pg_size_pretty can be used to format the result of one of the other functions in a human-readable way,
using kB, MB, GB or TB as appropriate.

The functions shown in Table 9-59 assist in identifying the specific disk files associated with database
objects.

Table 9-59. Database Object Location Functions

Name Return Type Description

oid Filenode number of the relation
pg_relation_filenode (relation| with the specified OID or name
regclass)

text File path name of the relation
pg_relation_filepath (relation with the specified OID or name
regclass)

pg_relation_filenode accepts the OID or name of a table, index, sequence, or toast table, and returns
the “filenode” number currently assigned to it. The filenode is the base component of the file name(s)
used for the relation (see Section 54.1 for more information). For most tables the result is the same as
pg_class.relfilenode, but for certain system catalogs relfilenode is zero and this function must
be used to get the correct value. The function returns NULL if passed a relation that does not have storage,
such as a view.

pg_relation_filepath is similarto pg_relation_filenode, butitreturns the entire file path name
(relative to the database cluster’s data directory PGDATA) of the relation.

The functions shown in Table 9-60 provide native access to files on the machine hosting the server. Only
files within the database cluster directory and the 1og_directory can be accessed. Use a relative path
for files in the cluster directory, and a path matching the 1og_directory configuration setting for log
files. Use of these functions is restricted to superusers.

Table 9-60. Generic File Access Functions

Name Return Type Description
pg_ls_dir (dirname text) setof text List the contents of a directory
pg_read_file (filename text, |text Return the contents of a text file

offset bigint, length bigint)

pg_stat_file (filename text) |record Return information about a file

[T3EL) 2

pg_1ls_dir returns all the names in the specified directory, except the special entries “.” and “. .”.

pg_read_file returns part of a text file, starting at the given offset, returning at most length bytes
(less if the end of file is reached first). If of fset is negative, it is relative to the end of the file.

pg_stat_file returns a record containing the file size, last accessed time stamp, last modified time
stamp, last file status change time stamp (Unix platforms only), file creation time stamp (Windows only),
and a boolean indicating if it is a directory. Typical usages include:

271

Chapter 9. Functions and Operators
SELECT % FROM pg_stat_file(’filename’);

SELECT (pg_stat_file(’filename’)) .modification;

The functions shown in Table 9-61 manage advisory locks. For details about proper use of these functions,
see Section 13.3.4.

Table 9-61. Advisory Lock Functions

Name Return Type Description
pg_advisory_lock (key void Obtain exclusive advisory lock
bigint)
pg_advisory_lock (keyl int, void Obtain exclusive advisory lock
key2 int)
pg_advisory_lock_shared (key | void Obtain shared advisory lock
bigint)

void Obtain shared advisory lock

pg_advisory_lock_shared (keyl

int, key2 int)

pg_try_advisory_lock (key boolean Obtain exclusive advisory lock if
bigint) available
pg_try_advisory_lock (keyl boolean Obtain exclusive advisory lock if
int, key2 int) available

boolean Obtain shared advisory lock if
pg_try_advisory_lock_shared (key available
bigint)

boolean Obtain shared advisory lock if
pg_try_advisory_lock_shared (keyl available

int, key2 int)

pg_advisory_unlock (key boolean Release an exclusive advisory
bigint) lock
pg_advisory_unlock (keyl boolean Release an exclusive advisory
int, key2 int) lock

boolean Release a shared advisory lock

pg_advisory_unlock_shared (key

bigint)

boolean Release a shared advisory lock
pg_advisory_unlock_shared (keyl

int, key2 int)

pg_advisory_unlock_all () void Release all advisory locks held
by the current session

pg_advisory_lock locks an application-defined resource, which can be identified either by a single
64-bit key value or two 32-bit key values (note that these two key spaces do not overlap). The key type is
specified in pg_locks.objid. If another session already holds a lock on the same resource, the function

272

Chapter 9. Functions and Operators

will wait until the resource becomes available. The lock is exclusive. Multiple lock requests stack, so that
if the same resource is locked three times it must be also unlocked three times to be released for other
sessions’ use.

pg_advisory_lock_shared works the same as pg_advisory_lock, except the lock can be shared
with other sessions requesting shared locks. Only would-be exclusive lockers are locked out.

pg_try_advisory_lock is similar to pg_advisory_lock, except the function will not wait for the
lock to become available. It will either obtain the lock immediately and return t rue, or return false if
the lock cannot be acquired immediately.

pg_try_advisory_lock_shared works the same as pg_try_advisory_lock, except it attempts to
acquire a shared rather than an exclusive lock.

pg_advisory_unlock will release a previously-acquired exclusive advisory lock. It returns t rue if the
lock is successfully released. If the lock was not held, it will return false, and in addition, an SQL
warning will be raised by the server.

pg_advisory_unlock_shared works the same as pg_advisory_unlock, except it releases a shared
advisory lock.

pg_advisory_unlock_all will release all advisory locks held by the current session. (This function is
implicitly invoked at session end, even if the client disconnects ungracefully.)

9.25. Trigger Functions

Currently PostgreSQL provides one built in trigger function,
suppress_redundant_updates_trigger, which will prevent any update that
does not actually change the data in the row from taking place, in contrast to the normal behavior which
always performs the update regardless of whether or not the data has changed. (This normal behavior
makes updates run faster, since no checking is required, and is also useful in certain cases.)

Ideally, you should normally avoid running updates that don’t actually change the data in the record.
Redundant updates can cost considerable unnecessary time, especially if there are lots of indexes to alter,
and space in dead rows that will eventually have to be vacuumed. However, detecting such situations in
client code is not always easy, or even possible, and writing expressions to detect them can be error-prone.
An alternative is to use suppress_redundant_updates_trigger, which will skip updates that don’t
change the data. You should use this with care, however. The trigger takes a small but non-trivial time for
each record, so if most of the records affected by an update are actually changed, use of this trigger will
actually make the update run slower.

The suppress_redundant_updates_trigger function can be added to a table like this:

CREATE TRIGGER z_min_update
BEFORE UPDATE ON tablename
FOR EACH ROW EXECUTE PROCEDURE suppress_redundant_updates_trigger();

In most cases, you would want to fire this trigger last for each row. Bearing in mind that triggers fire in
name order, you would then choose a trigger name that comes after the name of any other trigger you
might have on the table.

For more information about creating triggers, see CREATE TRIGGER.

273

Chapter 10. Type Conversion

SQL statements can, intentionally or not, require the mixing of different data types in the same expression.
PostgreSQL has extensive facilities for evaluating mixed-type expressions.

In many cases a user does not need to understand the details of the type conversion mechanism. However,
implicit conversions done by PostgreSQL can affect the results of a query. When necessary, these results
can be tailored by using explicit type conversion.

This chapter introduces the PostgreSQL type conversion mechanisms and conventions. Refer to the rele-
vant sections in Chapter 8 and Chapter 9 for more information on specific data types and allowed functions
and operators.

10.1. Overview

SQL is a strongly typed language. That is, every data item has an associated data type which determines its
behavior and allowed usage. PostgreSQL has an extensible type system that is more general and flexible
than other SQL implementations. Hence, most type conversion behavior in PostgreSQL is governed by
general rules rather than by ad hoc heuristics. This allows the use of mixed-type expressions even with
user-defined types.

The PostgreSQL scanner/parser divides lexical elements into five fundamental categories: integers, non-
integer numbers, strings, identifiers, and key words. Constants of most non-numeric types are first classi-
fied as strings. The SQL language definition allows specifying type names with strings, and this mecha-
nism can be used in PostgreSQL to start the parser down the correct path. For example, the query:

SELECT text ’Origin’ AS "label", point ’ (0,0)’ AS "value";

label | value

________ b
Origin | (0,0)

(1 row)

has two literal constants, of type text and point. If a type is not specified for a string literal, then the
placeholder type unknown is assigned initially, to be resolved in later stages as described below.

There are four fundamental SQL constructs requiring distinct type conversion rules in the PostgreSQL
parser:
Function calls

Much of the PostgreSQL type system is built around a rich set of functions. Functions can have one
or more arguments. Since PostgreSQL permits function overloading, the function name alone does
not uniquely identify the function to be called; the parser must select the right function based on the
data types of the supplied arguments.

Operators

PostgreSQL allows expressions with prefix and postfix unary (one-argument) operators, as well as
binary (two-argument) operators. Like functions, operators can be overloaded, so the same problem
of selecting the right operator exists.

274

Chapter 10. Type Conversion

Value Storage

SQL INSERT and UPDATE statements place the results of expressions into a table. The expressions
in the statement must be matched up with, and perhaps converted to, the types of the target columns.

UNION, CASE, and related constructs

Since all query results from a unionized SELECT statement must appear in a single set of columns,
the types of the results of each SELECT clause must be matched up and converted to a uniform set.
Similarly, the result expressions of a CASE construct must be converted to a common type so that the
CASE expression as a whole has a known output type. The same holds for ARRAY constructs, and for
the GREATEST and LEAST functions.

The system catalogs store information about which conversions, or casts, exist between which data types,
and how to perform those conversions. Additional casts can be added by the user with the CREATE CAST
command. (This is usually done in conjunction with defining new data types. The set of casts between
built-in types has been carefully crafted and is best not altered.)

An additional heuristic provided by the parser allows improved determination of the proper casting be-
havior among groups of types that have implicit casts. Data types are divided into several basic fype
categories, including boolean, numeric, string, bitstring, datetime, timespan, geometric,
network, and user-defined. (For a list see Table 45-45; but note it is also possible to create custom type
categories.) Within each category there can be one or more preferred types, which are preferred when
there is a choice of possible types. With careful selection of preferred types and available implicit casts, it
is possible to ensure that ambiguous expressions (those with multiple candidate parsing solutions) can be
resolved in a useful way.

All type conversion rules are designed with several principles in mind:

« Implicit conversions should never have surprising or unpredictable outcomes.

+ There should be no extra overhead in the parser or executor if a query does not need implicit type
conversion. That is, if a query is well-formed and the types already match, then the query should execute
without spending extra time in the parser and without introducing unnecessary implicit conversion calls
in the query.

Additionally, if a query usually requires an implicit conversion for a function, and if then the user
defines a new function with the correct argument types, the parser should use this new function and no
longer do implicit conversion to use the old function.

10.2. Operators

The specific operator that is referenced by an operator expression is determined using the following pro-
cedure. Note that this procedure is indirectly affected by the precedence of the involved operators, since
that will determine which sub-expressions are taken to be the inputs of which operators. See Section 4.1.6
for more information.

275

Chapter 10. Type Conversion

Operator Type Resolution

1.

Select the operators to be considered from the pg_operator system catalog. If a non-schema-
qualified operator name was used (the usual case), the operators considered are those with the match-
ing name and argument count that are visible in the current search path (see Section 5.7.3). If a
qualified operator name was given, only operators in the specified schema are considered.

a. If the search path finds multiple operators with identical argument types, only the one ap-
pearing earliest in the path is considered. Operators with different argument types are con-
sidered on an equal footing regardless of search path position.

Check for an operator accepting exactly the input argument types. If one exists (there can be only one
exact match in the set of operators considered), use it.

a. If one argument of a binary operator invocation is of the unknown type, then assume it is the
same type as the other argument for this check. Invocations involving two unknown inputs,
or a unary operator with an unknown input, will never find a match at this step.

Look for the best match.

a. Discard candidate operators for which the input types do not match and cannot be converted
(using an implicit conversion) to match. unknown literals are assumed to be convertible to
anything for this purpose. If only one candidate remains, use it; else continue to the next
step.

b. Run through all candidates and keep those with the most exact matches on input types.
(Domains are considered the same as their base type for this purpose.) Keep all candidates
if none have exact matches. If only one candidate remains, use it; else continue to the next
step.

c. Run through all candidates and keep those that accept preferred types (of the input data
type’s type category) at the most positions where type conversion will be required. Keep
all candidates if none accept preferred types. If only one candidate remains, use it; else
continue to the next step.

d. If any input arguments are unknown, check the type categories accepted at those argument
positions by the remaining candidates. At each position, select the st ring category if any
candidate accepts that category. (This bias towards string is appropriate since an unknown-
type literal looks like a string.) Otherwise, if all the remaining candidates accept the same
type category, select that category; otherwise fail because the correct choice cannot be de-
duced without more clues. Now discard candidates that do not accept the selected type
category. Furthermore, if any candidate accepts a preferred type in that category, discard
candidates that accept non-preferred types for that argument.

e. If only one candidate remains, use it. If no candidate or more than one candidate remains,
then fail.

Some examples follow.

276

Chapter 10. Type Conversion
Example 10-1. Factorial Operator Type Resolution

There is only one factorial operator (postfix !) defined in the standard catalog, and it takes an argument
of type bigint. The scanner assigns an initial type of integer to the argument in this query expression:

SELECT 40 ! AS "40 factorial";

40 factorial

815915283247897734345611269596115894272000000000

(1 row)
So the parser does a type conversion on the operand and the query is equivalent to:
SELECT CAST (40 AS bigint) ! AS "40 factorial";

Example 10-2. String Concatenation Operator Type Resolution

A string-like syntax is used for working with string types and for working with complex extension types.
Strings with unspecified type are matched with likely operator candidates.

An example with one unspecified argument:

SELECT text ’"abc’ || ’'def’ AS "text and unknown";

text and unknown

abcdef
(1 row)

In this case the parser looks to see if there is an operator taking text for both arguments. Since there is,
it assumes that the second argument should be interpreted as type text.

Here is a concatenation on unspecified types:

SELECT "abc’ || 'def’” AS "unspecified";

unspecified

abcdef
(1 row)

In this case there is no initial hint for which type to use, since no types are specified in the query. So, the
parser looks for all candidate operators and finds that there are candidates accepting both string-category
and bit-string-category inputs. Since string category is preferred when available, that category is selected,
and then the preferred type for strings, text, is used as the specific type to resolve the unknown literals
as.

Example 10-3. Absolute-Value and Negation Operator Type Resolution

The PostgreSQL operator catalog has several entries for the prefix operator @, all of which implement
absolute-value operations for various numeric data types. One of these entries is for type f1oat8, which

277

Chapter 10. Type Conversion

is the preferred type in the numeric category. Therefore, PostgreSQL will use that entry when faced with
an unknown input:

SELECT @ "-4.5" AS "abs";
abs

4.5
(1 row)
Here the system has implicitly resolved the unknown-type literal as type £loat8 before applying the
chosen operator. We can verify that f1oat 8 and not some other type was used:
SELECT @ ’'-4.5e500" AS "abs";

ERROR: "-4.5e500" is out of range for type double precision

On the other hand, the prefix operator ~ (bitwise negation) is defined only for integer data types, not for
float8. So, if we try a similar case with ~, we get:

SELECT ~ 720’ AS "negation";

ERROR: operator is not unique: ~ "unknown"
HINT: Could not choose a best candidate operator. You might need to add
explicit type casts.

This happens because the system cannot decide which of the several possible ~ operators should be pre-
ferred. We can help it out with an explicit cast:
SELECT ~ CAST(’20" AS int8) AS "negation";

negation

=21
(1 row)

10.3. Functions

The specific function that is referenced by a function call is determined using the following procedure.

Function Type Resolution

1. Select the functions to be considered from the pg_proc system catalog. If a non-schema-qualified
function name was used, the functions considered are those with the matching name and argument
count that are visible in the current search path (see Section 5.7.3). If a qualified function name was
given, only functions in the specified schema are considered.

a. If the search path finds multiple functions of identical argument types, only the one appear-
ing earliest in the path is considered. Functions of different argument types are considered
on an equal footing regardless of search path position.

b. If a function is declared with a VARTIADIC array parameter, and the call does not use the
VARIADIC keyword, then the function is treated as if the array parameter were replaced
by one or more occurrences of its element type, as needed to match the call. After such

278

Chapter 10. Type Conversion

expansion the function might have effective argument types identical to some non-variadic
function. In that case the function appearing earlier in the search path is used, or if the two
functions are in the same schema, the non-variadic one is preferred.

c. Functions that have default values for parameters are considered to match any call that omits
zero or more of the defaultable parameter positions. If more than one such function matches
a call, the one appearing earliest in the search path is used. If there are two or more such
functions in the same schema with identical parameter types in the non-defaulted positions
(which is possible if they have different sets of defaultable parameters), the system will not
be able to determine which to prefer, and so an “ambiguous function call” error will result
if no better match to the call can be found.

2. Check for a function accepting exactly the input argument types. If one exists (there can be only one
exact match in the set of functions considered), use it. (Cases involving unknown will never find a
match at this step.)

3. Ifno exact match is found, see if the function call appears to be a special type conversion request. This
happens if the function call has just one argument and the function name is the same as the (internal)
name of some data type. Furthermore, the function argument must be either an unknown-type literal,
or a type that is binary-coercible to the named data type, or a type that could be converted to the
named data type by applying that type’s I/O functions (that is, the conversion is either to or from one
of the standard string types). When these conditions are met, the function call is treated as a form of
CAST specification. '

4. Look for the best match.

a. Discard candidate functions for which the input types do not match and cannot be converted
(using an implicit conversion) to match. unknown literals are assumed to be convertible to
anything for this purpose. If only one candidate remains, use it; else continue to the next
step.

b. Run through all candidates and keep those with the most exact matches on input types.
(Domains are considered the same as their base type for this purpose.) Keep all candidates
if none have exact matches. If only one candidate remains, use it; else continue to the next
step.

c. Run through all candidates and keep those that accept preferred types (of the input data
type’s type category) at the most positions where type conversion will be required. Keep
all candidates if none accept preferred types. If only one candidate remains, use it; else
continue to the next step.

d. If any input arguments are unknown, check the type categories accepted at those argument
positions by the remaining candidates. At each position, select the string category if any
candidate accepts that category. (This bias towards string is appropriate since an unknown-
type literal looks like a string.) Otherwise, if all the remaining candidates accept the same
type category, select that category; otherwise fail because the correct choice cannot be de-
duced without more clues. Now discard candidates that do not accept the selected type
category. Furthermore, if any candidate accepts a preferred type in that category, discard
candidates that accept non-preferred types for that argument.

1. The reason for this step is to support function-style cast specifications in cases where there is not an actual cast function. If
there is a cast function, it is conventionally named after its output type, and so there is no need to have a special case. See CREATE
CAST for additional commentary.

279

Chapter 10. Type Conversion

e. If only one candidate remains, use it. If no candidate or more than one candidate remains,
then fail.

Note that the “best match” rules are identical for operator and function type resolution. Some examples
follow.

Example 10-4. Rounding Function Argument Type Resolution

There is only one round function that takes two arguments; it takes a first argument of type numeric and
a second argument of type integer. So the following query automatically converts the first argument of

type integer to numeric:

SELECT round (4, 4);

(1 row)
That query is actually transformed by the parser to:
SELECT round(CAST (4 AS numeric), 4);

Since numeric constants with decimal points are initially assigned the type numeric, the following query
will require no type conversion and therefore might be slightly more efficient:

SELECT round (4.0, 4);

Example 10-5. Substring Function Type Resolution

There are several substr functions, one of which takes types text and integer. If called with a string
constant of unspecified type, the system chooses the candidate function that accepts an argument of the
preferred category st ring (namely of type text).

SELECT substr (’1234’, 3);

substr

34
(1 row)

If the string is declared to be of type varchar, as might be the case if it comes from a table, then the
parser will try to convert it to become text:

SELECT substr (varchar ’1234’, 3);

substr

34
(1 row)

This is transformed by the parser to effectively become:
SELECT substr (CAST (varchar ’1234’ AS text), 3);

280

Chapter 10. Type Conversion

Note: The parser learns from the pg_cast catalog that text and varchar are binary-compatible,
meaning that one can be passed to a function that accepts the other without doing any physical
conversion. Therefore, no type conversion call is really inserted in this case.

And, if the function is called with an argument of type integer, the parser will try to convert that to
text:

SELECT substr (1234, 3);

ERROR: function substr(integer, integer) does not exist

HINT: No function matches the given name and argument types. You might need
to add explicit type casts.

This does not work because integer does not have an implicit cast to text. An explicit cast will work,

however:
SELECT substr (CAST (1234 AS text), 3);

substr

10.4. Value Storage

Values to be inserted into a table are converted to the destination column’s data type according to the
following steps.

Value Storage Type Conversion

1. Check for an exact match with the target.

2. Otherwise, try to convert the expression to the target type. This will succeed if there is a registered
cast between the two types. If the expression is an unknown-type literal, the contents of the literal
string will be fed to the input conversion routine for the target type.

3. Check to see if there is a sizing cast for the target type. A sizing cast is a cast from that type to itself.
If one is found in the pg_cast catalog, apply it to the expression before storing into the destina-
tion column. The implementation function for such a cast always takes an extra parameter of type
integer, which receives the destination column’s declared length (actually, its atttypmod value;
the interpretation of atttypmod varies for different data types). The cast function is responsible for
applying any length-dependent semantics such as size checking or truncation.

281

Chapter 10. Type Conversion

Example 10-6. character Storage Type Conversion

For a target column declared as character (20) the following statement ensures that the stored value is
sized correctly:

CREATE TABLE vv (v character(20));
INSERT INTO vv SELECT ’abc’ || 'def’;
SELECT v, length(v) FROM vv;

abcdef | 20
(1 row)

What has really happened here is that the two unknown literals are resolved to text by default, allowing
the | | operator to be resolved as text concatenation. Then the text result of the operator is converted to
bpchar (“blank-padded char”, the internal name of the character data type) to match the target column
type. (Since the conversion from text to bpchar is binary-coercible, this conversion does not insert
any real function call.) Finally, the sizing function bpchar (bpchar, integer) is found in the system
catalog and applied to the operator’s result and the stored column length. This type-specific function
performs the required length check and addition of padding spaces.

10.5. uNn1ION, cASE, and Related Constructs

SQL UNION constructs must match up possibly dissimilar types to become a single result set. The resolu-
tion algorithm is applied separately to each output column of a union query. The INTERSECT and EXCEPT
constructs resolve dissimilar types in the same way as UNION. The CASE, ARRAY, VALUES, GREATEST and
LEAST constructs use the identical algorithm to match up their component expressions and select a result
data type.

Type Resolution for UNION, CASE, and Related Constructs
1. If all inputs are of the same type, and it is not unknown, resolve as that type. Otherwise, replace any
domain types in the list with their underlying base types.

2. If all inputs are of type unknown, resolve as type text (the preferred type of the string category).
Otherwise, unknown inputs are ignored.

3. If the non-unknown inputs are not all of the same type category, fail.
4. Choose the first non-unknown input type which is a preferred type in that category, if there is one.

5. Otherwise, choose the last non-unknown input type that allows all the preceding non-unknown inputs
to be implicitly converted to it. (There always is such a type, since at least the first type in the list
must satisfy this condition.)

6. Convert all inputs to the selected type. Fail if there is not a conversion from a given input to the
selected type.

Some examples follow.

282

Chapter 10. Type Conversion

Example 10-7. Type Resolution with Underspecified Types in a Union

SELECT text ’"a’ AS "text" UNION SELECT ’'b’;

(2 rows)
Here, the unknown-type literal ' b’ will be resolved to type text.

Example 10-8. Type Resolution in a Simple Union

SELECT 1.2 AS "numeric" UNION SELECT 1;

numeric

1.2
(2 rows)
The literal 1.2 is of type numeric, and the integer value 1 can be cast implicitly to numeric, so that
type is used.

Example 10-9. Type Resolution in a Transposed Union

SELECT 1 AS "real" UNION SELECT CAST('2.2’ AS REAL);

2.2
(2 rows)
Here, since type real cannot be implicitly cast to integer, but integer can be implicitly cast to real,
the union result type is resolved as real.

283

Chapter 11. Indexes

Indexes are a common way to enhance database performance. An index allows the database server to find
and retrieve specific rows much faster than it could do without an index. But indexes also add overhead to
the database system as a whole, so they should be used sensibly.

11.1. Introduction

Suppose we have a table similar to this:

CREATE TABLE testl (
id integer,
content wvarchar

)i
and the application issues many queries of the form:

SELECT content FROM testl WHERE id = constant;

With no advance preparation, the system would have to scan the entire test 1 table, row by row, to find all
matching entries. If there are many rows in test1 and only a few rows (perhaps zero or one) that would
be returned by such a query, this is clearly an inefficient method. But if the system has been instructed to
maintain an index on the id column, it can use a more efficient method for locating matching rows. For
instance, it might only have to walk a few levels deep into a search tree.

A similar approach is used in most non-fiction books: terms and concepts that are frequently looked up
by readers are collected in an alphabetic index at the end of the book. The interested reader can scan the
index relatively quickly and flip to the appropriate page(s), rather than having to read the entire book to
find the material of interest. Just as it is the task of the author to anticipate the items that readers are likely
to look up, it is the task of the database programmer to foresee which indexes will be useful.

The following command can be used to create an index on the id column, as discussed:
CREATE INDEX testl_id_index ON testl (id);

The name test1_id_index can be chosen freely, but you should pick something that enables you to
remember later what the index was for.

To remove an index, use the DROP INDEX command. Indexes can be added to and removed from tables at
any time.

Once an index is created, no further intervention is required: the system will update the index when the
table is modified, and it will use the index in queries when it thinks doing so would be more efficient than
a sequential table scan. But you might have to run the ANALYZE command regularly to update statistics
to allow the query planner to make educated decisions. See Chapter 14 for information about how to find
out whether an index is used and when and why the planner might choose nof to use an index.

Indexes can also benefit UPDATE and DELETE commands with search conditions. Indexes can moreover
be used in join searches. Thus, an index defined on a column that is part of a join condition can also
significantly speed up queries with joins.

284

Chapter 11. Indexes

Creating an index on a large table can take a long time. By default, PostgreSQL allows reads (SELECT
statements) to occur on the table in parallel with index creation, but writes (INSERT, UPDATE, DELETE)
are blocked until the index build is finished. In production environments this is often unacceptable. It is
possible to allow writes to occur in parallel with index creation, but there are several caveats to be aware
of — for more information see Building Indexes Concurrently.

After an index is created, the system has to keep it synchronized with the table. This adds overhead to data
manipulation operations. Therefore indexes that are seldom or never used in queries should be removed.

11.2. Index Types

PostgreSQL provides several index types: B-tree, Hash, GiST and GIN. Each index type uses a different
algorithm that is best suited to different types of queries. By default, the CREATE INDEX command creates
B-tree indexes, which fit the most common situations.

B-trees can handle equality and range queries on data that can be sorted into some ordering. In particular,
the PostgreSQL query planner will consider using a B-tree index whenever an indexed column is involved
in a comparison using one of these operators:

Constructs equivalent to combinations of these operators, such as BETWEEN and IN, can also be imple-
mented with a B-tree index search. Also, an IS NULL or IS NOT NULL condition on an index column
can be used with a B-tree index.

The optimizer can also use a B-tree index for queries involving the pattern matching operators LIKE and
~ if the pattern is a constant and is anchored to the beginning of the string — for example, col LIKE
" foo%’ or col ~ ’"~foo’, but not col LIKE ’$bar’. However, if your database does not use the
C locale you will need to create the index with a special operator class to support indexing of pattern-
matching queries; see Section 11.9 below. It is also possible to use B-tree indexes for ILIKE and ~«, but
only if the pattern starts with non-alphabetic characters, i.e., characters that are not affected by upper/lower
case conversion.

Hash indexes can only handle simple equality comparisons. The query planner will consider using a
hash index whenever an indexed column is involved in a comparison using the = operator. The following
command is used to create a hash index:

CREATE INDEX name ON table USING hash (column);

Caution

Hash index operations are not presently WAL-logged, so hash indexes might need
to be rebuilt with ReINDEX after a database crash. They are also not replicated over
streaming or file-based replication. For these reasons, hash index use is presently
discouraged.

285

Chapter 11. Indexes

GiST indexes are not a single kind of index, but rather an infrastructure within which many different
indexing strategies can be implemented. Accordingly, the particular operators with which a GiST index
can be used vary depending on the indexing strategy (the operator class). As an example, the standard
distribution of PostgreSQL includes GiST operator classes for several two-dimensional geometric data
types, which support indexed queries using these operators:

<<
&<
&>
>>
<<
&<
| &>
[>>
@>
<@

&&

(See Section 9.11 for the meaning of these operators.) Many other GiST operator classes are available in
the cont rib collection or as separate projects. For more information see Chapter 52.

GIN indexes are inverted indexes which can handle values that contain more than one key, arrays for
example. Like GiST, GIN can support many different user-defined indexing strategies and the particular
operators with which a GIN index can be used vary depending on the indexing strategy. As an example,
the standard distribution of PostgreSQL includes GIN operator classes for one-dimensional arrays, which
support indexed queries using these operators:

<@
@>

&&

(See Section 9.17 for the meaning of these operators.) Many other GIN operator classes are available in
the contrib collection or as separate projects. For more information see Chapter 53.

11.3. Multicolumn Indexes

An index can be defined on more than one column of a table. For example, if you have a table of this
form:

CREATE TABLE test2 (
major int,
minor int,
name varchar

)

(say, you keep your /dev directory in a database...) and you frequently issue queries like:

286

Chapter 11. Indexes
SELECT name FROM test2 WHERE major = constant AND minor = constant;

then it might be appropriate to define an index on the columns major and minor together, e.g.:

CREATE INDEX test2_mm_idx ON test2 (major, minor);

Currently, only the B-tree, GiST and GIN index types support multicolumn indexes. Up to 32 columns can
be specified. (This limit can be altered when building PostgreSQL; see the file pg_config_manual.h.)

A multicolumn B-tree index can be used with query conditions that involve any subset of the index’s
columns, but the index is most efficient when there are constraints on the leading (leftmost) columns.
The exact rule is that equality constraints on leading columns, plus any inequality constraints on the first
column that does not have an equality constraint, will be used to limit the portion of the index that is
scanned. Constraints on columns to the right of these columns are checked in the index, so they save visits
to the table proper, but they do not reduce the portion of the index that has to be scanned. For example,
given an index on (a, b, c) and a query condition WHERE a = 5 AND b >= 42 AND c < 77,the
index would have to be scanned from the first entry with a = 5 and b = 42 up through the last entry with a
= 5. Index entries with ¢ >= 77 would be skipped, but they’d still have to be scanned through. This index
could in principle be used for queries that have constraints on b and/or ¢ with no constraint on a — but
the entire index would have to be scanned, so in most cases the planner would prefer a sequential table
scan over using the index.

A multicolumn GiST index can be used with query conditions that involve any subset of the index’s
columns. Conditions on additional columns restrict the entries returned by the index, but the condition on
the first column is the most important one for determining how much of the index needs to be scanned. A
GiST index will be relatively ineffective if its first column has only a few distinct values, even if there are
many distinct values in additional columns.

A multicolumn GIN index can be used with query conditions that involve any subset of the index’s
columns. Unlike B-tree or GiST, index search effectiveness is the same regardless of which index col-
umn(s) the query conditions use.

Of course, each column must be used with operators appropriate to the index type; clauses that involve
other operators will not be considered.

Multicolumn indexes should be used sparingly. In most situations, an index on a single column is sufficient
and saves space and time. Indexes with more than three columns are unlikely to be helpful unless the usage
of the table is extremely stylized. See also Section 11.5 for some discussion of the merits of different index
configurations.

11.4. Indexes and ORDER BY

In addition to simply finding the rows to be returned by a query, an index may be able to deliver them
in a specific sorted order. This allows a query’s ORDER BY specification to be honored without a separate
sorting step. Of the index types currently supported by PostgreSQL, only B-tree can produce sorted output
— the other index types return matching rows in an unspecified, implementation-dependent order.

The planner will consider satisfying an ORDER BY specification either by scanning an available index
that matches the specification, or by scanning the table in physical order and doing an explicit sort. For a

287

Chapter 11. Indexes

query that requires scanning a large fraction of the table, an explicit sort is likely to be faster than using
an index because it requires less disk I/O due to following a sequential access pattern. Indexes are more
useful when only a few rows need be fetched. An important special case is ORDER BY in combination
with LIMIT n: an explicit sort will have to process all the data to identify the first n rows, but if there is an
index matching the ORDER BY, the first n rows can be retrieved directly, without scanning the remainder
at all.

By default, B-tree indexes store their entries in ascending order with nulls last. This means that a forward
scan of an index on column x produces output satisfying ORDER BY x (or more verbosely, ORDER BY
x ASC NULLS LAST). The index can also be scanned backward, producing output satisfying ORDER BY
x DESC (or more verbosely, ORDER BY x DESC NULLS FIRST, since NULLS FIRST is the default for
ORDER BY DESC).

You can adjust the ordering of a B-tree index by including the options ASC, DESC, NULLS FIRST, and/or
NULLS LAST when creating the index; for example:

CREATE INDEX test2_info_nulls_low ON test2 (info NULLS FIRST);
CREATE INDEX test3_desc_index ON test3 (id DESC NULLS LAST);

An index stored in ascending order with nulls first can satisfy either ORDER BY x ASC NULLS FIRST
or ORDER BY x DESC NULLS LAST depending on which direction it is scanned in.

You might wonder why bother providing all four options, when two options together with the possibility of
backward scan would cover all the variants of ORDER BY. In single-column indexes the options are indeed
redundant, but in multicolumn indexes they can be useful. Consider a two-column index on (x, y): this
can satisfy ORDER BY x, vy if we scan forward, or ORDER BY x DESC, y DESC if we scan backward.
But it might be that the application frequently needs to use ORDER BY x ASC, y DESC. There is no way
to get that ordering from a plain index, but it is possible if the index is defined as (x ASC, y DESC) or
(x DESC, y ASC).

Obviously, indexes with non-default sort orderings are a fairly specialized feature, but sometimes they can
produce tremendous speedups for certain queries. Whether it’s worth maintaining such an index depends
on how often you use queries that require a special sort ordering.

11.5. Combining Multiple Indexes

A single index scan can only use query clauses that use the index’s columns with operators of its operator
class and are joined with AND. For example, given an index on (a, b) a query condition like WHERE a
= 5 AND b = 6 could use the index, but a query like WHERE a = 5 OR b = 6 could not directly use
the index.

Fortunately, PostgreSQL has the ability to combine multiple indexes (including multiple uses of the same
index) to handle cases that cannot be implemented by single index scans. The system can form AND and OR
conditions across several index scans. For example, a query like WHERE x = 42 OR x = 47 OR x =
53 OR x = 99 could be broken down into four separate scans of an index on x, each scan using one of the
query clauses. The results of these scans are then ORed together to produce the result. Another example
is that if we have separate indexes on x and y, one possible implementation of a query like WHERE x =
5 AND y = 6 is to use each index with the appropriate query clause and then AND together the index
results to identify the result rows.

288

Chapter 11. Indexes

To combine multiple indexes, the system scans each needed index and prepares a bitmap in memory
giving the locations of table rows that are reported as matching that index’s conditions. The bitmaps are
then ANDed and ORed together as needed by the query. Finally, the actual table rows are visited and
returned. The table rows are visited in physical order, because that is how the bitmap is laid out; this
means that any ordering of the original indexes is lost, and so a separate sort step will be needed if the
query has an ORDER BY clause. For this reason, and because each additional index scan adds extra time,
the planner will sometimes choose to use a simple index scan even though additional indexes are available
that could have been used as well.

In all but the simplest applications, there are various combinations of indexes that might be useful, and
the database developer must make trade-offs to decide which indexes to provide. Sometimes multicolumn
indexes are best, but sometimes it’s better to create separate indexes and rely on the index-combination
feature. For example, if your workload includes a mix of queries that sometimes involve only column
x, sometimes only column y, and sometimes both columns, you might choose to create two separate
indexes on x and vy, relying on index combination to process the queries that use both columns. You
could also create a multicolumn index on (x, y). This index would typically be more efficient than
index combination for queries involving both columns, but as discussed in Section 11.3, it would be
almost useless for queries involving only y, so it should not be the only index. A combination of the
multicolumn index and a separate index on y would serve reasonably well. For queries involving only
%, the multicolumn index could be used, though it would be larger and hence slower than an index on x
alone. The last alternative is to create all three indexes, but this is probably only reasonable if the table is
searched much more often than it is updated and all three types of query are common. If one of the types
of query is much less common than the others, you’d probably settle for creating just the two indexes that
best match the common types.

11.6. Unique Indexes

Indexes can also be used to enforce uniqueness of a column’s value, or the uniqueness of the combined
values of more than one column.

CREATE UNIQUE INDEX name ON table (column [, ...]);

Currently, only B-tree indexes can be declared unique.

When an index is declared unique, multiple table rows with equal indexed values are not allowed. Null
values are not considered equal. A multicolumn unique index will only reject cases where all indexed
columns are equal in multiple rows.

PostgreSQL automatically creates a unique index when a unique constraint or primary key is defined for
a table. The index covers the columns that make up the primary key or unique constraint (a multicolumn
index, if appropriate), and is the mechanism that enforces the constraint.

Note: The preferred way to add a unique constraint to a table is ALTER TABLE ... ADD CONSTRAINT.
The use of indexes to enforce unique constraints could be considered an implementation detail that
should not be accessed directly. One should, however, be aware that there’s no need to manually
create indexes on unique columns; doing so would just duplicate the automatically-created index.

289

Chapter 11. Indexes

11.7. Indexes on Expressions

An index column need not be just a column of the underlying table, but can be a function or scalar
expression computed from one or more columns of the table. This feature is useful to obtain fast access
to tables based on the results of computations.

For example, a common way to do case-insensitive comparisons is to use the lower function:

SELECT = FROM testl WHERE lower (coll) = ’'value’;

This query can use an index if one has been defined on the result of the lower (col1) function:

CREATE INDEX testl_lower_coll_idx ON testl (lower(coll));

If we were to declare this index UNTIQUE, it would prevent creation of rows whose col1 values differ only
in case, as well as rows whose col1 values are actually identical. Thus, indexes on expressions can be
used to enforce constraints that are not definable as simple unique constraints.

As another example, if one often does queries like:
SELECT x= FROM people WHERE (first_name || ' ' || last_name) = ’John Smith’;
then it might be worth creating an index like this:

CREATE INDEX people_names ON people ((first_name || ' ' || last_name));

The syntax of the CREATE INDExX command normally requires writing parentheses around index expres-
sions, as shown in the second example. The parentheses can be omitted when the expression is just a
function call, as in the first example.

Index expressions are relatively expensive to maintain, because the derived expression(s) must be com-
puted for each row upon insertion and whenever it is updated. However, the index expressions are not
recomputed during an indexed search, since they are already stored in the index. In both examples above,
the system sees the query as just WHERE indexedcolumn = ’constant’ and so the speed of the search
is equivalent to any other simple index query. Thus, indexes on expressions are useful when retrieval speed
is more important than insertion and update speed.

11.8. Partial Indexes

A partial index is an index built over a subset of a table; the subset is defined by a conditional expression
(called the predicate of the partial index). The index contains entries only for those table rows that satisfy
the predicate. Partial indexes are a specialized feature, but there are several situations in which they are
useful.

One major reason for using a partial index is to avoid indexing common values. Since a query searching
for a common value (one that accounts for more than a few percent of all the table rows) will not use the
index anyway, there is no point in keeping those rows in the index at all. This reduces the size of the index,
which will speed up those queries that do use the index. It will also speed up many table update operations

290

Chapter 11. Indexes

because the index does not need to be updated in all cases. Example 11-1 shows a possible application of
this idea.

Example 11-1. Setting up a Partial Index to Exclude Common Values

Suppose you are storing web server access logs in a database. Most accesses originate from the IP address
range of your organization but some are from elsewhere (say, employees on dial-up connections). If your
searches by IP are primarily for outside accesses, you probably do not need to index the IP range that
corresponds to your organization’s subnet.

Assume a table like this:

CREATE TABLE access_log (
url varchar,
client_ip inet,

)i
To create a partial index that suits our example, use a command such as this:

CREATE INDEX access_log_client_ip_ix ON access_log (client_ip)
WHERE NOT (client_ip > inet ’192.168.100.0" AND
client_ip < inet 7192.168.100.255");

A typical query that can use this index would be:

SELECT «

FROM access_log

WHERE url = ’/index.html’ AND client_ip = inet ’212.78.10.32'";
A query that cannot use this index is:

SELECT =«

FROM access_log

WHERE client_ip = inet 7192.168.100.23’;

Observe that this kind of partial index requires that the common values be predetermined, so such partial
indexes are best used for data distributions that do not change. The indexes can be recreated occasionally
to adjust for new data distributions, but this adds maintenance effort.

Another possible use for a partial index is to exclude values from the index that the typical query workload
is not interested in; this is shown in Example 11-2. This results in the same advantages as listed above,
but it prevents the “uninteresting” values from being accessed via that index, even if an index scan might
be profitable in that case. Obviously, setting up partial indexes for this kind of scenario will require a lot
of care and experimentation.

Example 11-2. Setting up a Partial Index to Exclude Uninteresting Values

If you have a table that contains both billed and unbilled orders, where the unbilled orders take up a small
fraction of the total table and yet those are the most-accessed rows, you can improve performance by
creating an index on just the unbilled rows. The command to create the index would look like this:

CREATE INDEX orders_unbilled_index ON orders (order_nr)
WHERE billed is not true;

A possible query to use this index would be:

291

Chapter 11. Indexes

SELECT * FROM orders WHERE billed is not true AND order_nr < 10000;

However, the index can also be used in queries that do not involve order_nr at all, e.g.:
SELECT * FROM orders WHERE billed is not true AND amount > 5000.00;

This is not as efficient as a partial index on the amount column would be, since the system has to scan the
entire index. Yet, if there are relatively few unbilled orders, using this partial index just to find the unbilled
orders could be a win.

Note that this query cannot use this index:

SELECT = FROM orders WHERE order_nr = 3501;
The order 3501 might be among the billed or unbilled orders.

Example 11-2 also illustrates that the indexed column and the column used in the predicate do not need
to match. PostgreSQL supports partial indexes with arbitrary predicates, so long as only columns of the
table being indexed are involved. However, keep in mind that the predicate must match the conditions
used in the queries that are supposed to benefit from the index. To be precise, a partial index can be
used in a query only if the system can recognize that the WHERE condition of the query mathematically
implies the predicate of the index. PostgreSQL does not have a sophisticated theorem prover that can
recognize mathematically equivalent expressions that are written in different forms. (Not only is such
a general theorem prover extremely difficult to create, it would probably be too slow to be of any real
use.) The system can recognize simple inequality implications, for example “x < 17 implies “x < 27;
otherwise the predicate condition must exactly match part of the query’s WHERE condition or the index
will not be recognized as usable. Matching takes place at query planning time, not at run time. As a
result, parameterized query clauses do not work with a partial index. For example a prepared query with a
parameter might specify “x < ?”” which will never imply “x < 2” for all possible values of the parameter.

A third possible use for partial indexes does not require the index to be used in queries at all. The idea
here is to create a unique index over a subset of a table, as in Example 11-3. This enforces uniqueness
among the rows that satisfy the index predicate, without constraining those that do not.

Example 11-3. Setting up a Partial Unique Index

Suppose that we have a table describing test outcomes. We wish to ensure that there is only one “success-
ful” entry for a given subject and target combination, but there might be any number of “unsuccessful”
entries. Here is one way to do it:

CREATE TABLE tests (
subject text,
target text,
success boolean,

)

CREATE UNIQUE INDEX tests_success_constraint ON tests (subject, target)
WHERE success;
This is a particularly efficient approach when there are few successful tests and many unsuccessful ones.

Finally, a partial index can also be used to override the system’s query plan choices. Also, data sets
with peculiar distributions might cause the system to use an index when it really should not. In that case

292

Chapter 11. Indexes

the index can be set up so that it is not available for the offending query. Normally, PostgreSQL makes
reasonable choices about index usage (e.g., it avoids them when retrieving common values, so the earlier
example really only saves index size, it is not required to avoid index usage), and grossly incorrect plan
choices are cause for a bug report.

Keep in mind that setting up a partial index indicates that you know at least as much as the query planner
knows, in particular you know when an index might be profitable. Forming this knowledge requires ex-
perience and understanding of how indexes in PostgreSQL work. In most cases, the advantage of a partial
index over a regular index will be minimal.

More information about partial indexes can be found in The case for partial indexes , Partial indexing in
POSTGRES: research project, and Generalized Partial Indexes (cached version) .

11.9. Operator Classes and Operator Families

An index definition can specify an operator class for each column of an index.

CREATE INDEX name ON table (column opclass [sort options] [, ...1);

The operator class identifies the operators to be used by the index for that column. For example, a B-
tree index on the type int4 would use the int4_ops class; this operator class includes comparison
functions for values of type int4. In practice the default operator class for the column’s data type is
usually sufficient. The main reason for having operator classes is that for some data types, there could be
more than one meaningful index behavior. For example, we might want to sort a complex-number data
type either by absolute value or by real part. We could do this by defining two operator classes for the data
type and then selecting the proper class when making an index. The operator class determines the basic
sort ordering (which can then be modified by adding sort options ASC/DESC and/or NULLS FIRST/NULLS
LAST).

There are also some built-in operator classes besides the default ones:

« The operator classes text_pattern_ops, varchar_pattern_ops, and bpchar_pattern_ops
support B-tree indexes on the types text, varchar, and char respectively. The difference from the
default operator classes is that the values are compared strictly character by character rather than
according to the locale-specific collation rules. This makes these operator classes suitable for use
by queries involving pattern matching expressions (LIKE or POSIX regular expressions) when the
database does not use the standard “C” locale. As an example, you might index a varchar column
like this:

CREATE INDEX test_index ON test_table (col varchar_pattern_ops);

Note that you should also create an index with the default operator class if you want queries involving
ordinary <, <=, >, or >= comparisons to use an index. Such queries cannot use the xxx_pattern_ops
operator classes. (Ordinary equality comparisons can use these operator classes, however.) It is possible
to create multiple indexes on the same column with different operator classes. If you do use the C locale,
you do not need the xxx_pattern_ops operator classes, because an index with the default operator
class is usable for pattern-matching queries in the C locale.

The following query shows all defined operator classes:

293

Chapter 11. Indexes

SELECT am.amname AS index_method,
opc.opcname AS opclass_name
FROM pg_am am, pg_opclass opc
WHERE opc.opcmethod = am.oid
ORDER BY index_method, opclass_name;

An operator class is actually just a subset of a larger structure called an operator family. In cases where
several data types have similar behaviors, it is frequently useful to define cross-data-type operators and
allow these to work with indexes. To do this, the operator classes for each of the types must be grouped
into the same operator family. The cross-type operators are members of the family, but are not associated
with any single class within the family.

This query shows all defined operator families and all the operators included in each family:

SELECT am.amname AS index_method,
opf.opfname AS opfamily_ name,
amop.amopopr: :regoperator AS opfamily_operator
FROM pg_am am, pg_opfamily opf, pg_amop amop
WHERE opf.opfmethod = am.oid AND
amop.amopfamily = opf.oid
ORDER BY index_method, opfamily_name, opfamily_operator;

11.10. Examining Index Usage

Although indexes in PostgreSQL do not need maintenance or tuning, it is still important to check which
indexes are actually used by the real-life query workload. Examining index usage for an individual query
is done with the EXPLAIN command; its application for this purpose is illustrated in Section 14.1. It is
also possible to gather overall statistics about index usage in a running server, as described in Section
27.2.

It is difficult to formulate a general procedure for determining which indexes to create. There are a number
of typical cases that have been shown in the examples throughout the previous sections. A good deal of
experimentation is often necessary. The rest of this section gives some tips for that:

« Always run ANALYZE first. This command collects statistics about the distribution of the values in the
table. This information is required to estimate the number of rows returned by a query, which is needed
by the planner to assign realistic costs to each possible query plan. In absence of any real statistics, some
default values are assumed, which are almost certain to be inaccurate. Examining an application’s index
usage without having run ANALYZE is therefore a lost cause. See Section 23.1.3 and Section 23.1.5 for
more information.

+ Use real data for experimentation. Using test data for setting up indexes will tell you what indexes you
need for the test data, but that is all.

It is especially fatal to use very small test data sets. While selecting 1000 out of 100000 rows could be
a candidate for an index, selecting 1 out of 100 rows will hardly be, because the 100 rows probably fit
within a single disk page, and there is no plan that can beat sequentially fetching 1 disk page.

294

Chapter 11. Indexes

Also be careful when making up test data, which is often unavoidable when the application is not yet in
production. Values that are very similar, completely random, or inserted in sorted order will skew the
statistics away from the distribution that real data would have.

When indexes are not used, it can be useful for testing to force their use. There are run-time parameters
that can turn off various plan types (see Section 18.6.1). For instance, turning off sequential scans
(enable_segscan) and nested-loop joins (enable_nestloop), which are the most basic plans, will
force the system to use a different plan. If the system still chooses a sequential scan or nested-loop join
then there is probably a more fundamental reason why the index is not being used; for example, the
query condition does not match the index. (What kind of query can use what kind of index is explained
in the previous sections.)

If forcing index usage does use the index, then there are two possibilities: Either the system is right
and using the index is indeed not appropriate, or the cost estimates of the query plans are not reflecting
reality. So you should time your query with and without indexes. The EXPLAIN ANALYZE command
can be useful here.

If it turns out that the cost estimates are wrong, there are, again, two possibilities. The total cost is
computed from the per-row costs of each plan node times the selectivity estimate of the plan node. The
costs estimated for the plan nodes can be adjusted via run-time parameters (described in Section 18.6.2).
An inaccurate selectivity estimate is due to insufficient statistics. It might be possible to improve this
by tuning the statistics-gathering parameters (see ALTER TABLE).

If you do not succeed in adjusting the costs to be more appropriate, then you might have to resort to
forcing index usage explicitly. You might also want to contact the PostgreSQL developers to examine
the issue.

295

Chapter 12. Full Text Search

12.1. Introduction

Full Text Searching (or just text search) provides the capability to identify natural-language documents
that satisfy a query, and optionally to sort them by relevance to the query. The most common type of
search is to find all documents containing given guery terms and return them in order of their similarity
to the query. Notions of query and similarity are very flexible and depend on the specific application.
The simplest search considers query as a set of words and similarity as the frequency of query words
in the document.

Textual search operators have existed in databases for years. PostgreSQL has ~, ~x, LIKE, and ILIKE
operators for textual data types, but they lack many essential properties required by modern information
systems:

+ There is no linguistic support, even for English. Regular expressions are not sufficient because they
cannot easily handle derived words, e.g., satisfies and satisfy. You might miss documents that
contain satisfies, although you probably would like to find them when searching for satisfy. Itis
possible to use OR to search for multiple derived forms, but this is tedious and error-prone (some words
can have several thousand derivatives).

+ They provide no ordering (ranking) of search results, which makes them ineffective when thousands of
matching documents are found.

« They tend to be slow because there is no index support, so they must process all documents for every
search.

Full text indexing allows documents to be preprocessed and an index saved for later rapid searching.
Preprocessing includes:

Parsing documents into tokens. It is useful to identify various classes of tokens, e.g., numbers, words,
complex words, email addresses, so that they can be processed differently. In principle token classes
depend on the specific application, but for most purposes it is adequate to use a predefined set of classes.
PostgreSQL uses a parser to perform this step. A standard parser is provided, and custom parsers can
be created for specific needs.

Converting tokens into lexemes. A lexeme is a string, just like a token, but it has been normalized so that
different forms of the same word are made alike. For example, normalization almost always includes
folding upper-case letters to lower-case, and often involves removal of suffixes (such as s or es in
English). This allows searches to find variant forms of the same word, without tediously entering all the
possible variants. Also, this step typically eliminates sfop words, which are words that are so common
that they are useless for searching. (In short, then, tokens are raw fragments of the document text, while
lexemes are words that are believed useful for indexing and searching.) PostgreSQL uses dictionaries
to perform this step. Various standard dictionaries are provided, and custom ones can be created for
specific needs.

Storing preprocessed documents optimized for searching. For example, each document can be repre-
sented as a sorted array of normalized lexemes. Along with the lexemes it is often desirable to store
positional information to use for proximity ranking, so that a document that contains a more “dense”
region of query words is assigned a higher rank than one with scattered query words.

296

Chapter 12. Full Text Search

Dictionaries allow fine-grained control over how tokens are normalized. With appropriate dictionaries,
you can:

« Define stop words that should not be indexed.

+ Map synonyms to a single word using Ispell.

« Map phrases to a single word using a thesaurus.

» Map different variations of a word to a canonical form using an Ispell dictionary.

« Map different variations of a word to a canonical form using Snowball stemmer rules.

A data type tsvector is provided for storing preprocessed documents, along with a type tsquery for
representing processed queries (Section 8.11). There are many functions and operators available for these
data types (Section 9.13), the most important of which is the match operator @@, which we introduce in
Section 12.1.2. Full text searches can be accelerated using indexes (Section 12.9).

12.1.1. What Is a Document?

A document is the unit of searching in a full text search system; for example, a magazine article or email
message. The text search engine must be able to parse documents and store associations of lexemes (key
words) with their parent document. Later, these associations are used to search for documents that contain
query words.

For searches within PostgreSQL, a document is normally a textual field within a row of a database table,
or possibly a combination (concatenation) of such fields, perhaps stored in several tables or obtained
dynamically. In other words, a document can be constructed from different parts for indexing and it might
not be stored anywhere as a whole. For example:

SELECT title || " " || author || 7 7 || abstract || 7 ' || body AS document
FROM messages
WHERE mid = 12;

SELECT m.title || * ’ || m.author || * ' || m.abstract || * 7 || d.body AS document
FROM messages m, docs d
WHERE mid = did AND mid = 12;

Note: Actually, in these example queries, coalesce should be used to prevent a single nuLL attribute
from causing a NuULL result for the whole document.

Another possibility is to store the documents as simple text files in the file system. In this case, the database
can be used to store the full text index and to execute searches, and some unique identifier can be used to
retrieve the document from the file system. However, retrieving files from outside the database requires
superuser permissions or special function support, so this is usually less convenient than keeping all the
data inside PostgreSQL. Also, keeping everything inside the database allows easy access to document
metadata to assist in indexing and display.

For text search purposes, each document must be reduced to the preprocessed t svector format. Search-
ing and ranking are performed entirely on the tsvector representation of a document — the original
text need only be retrieved when the document has been selected for display to a user. We therefore often

297

Chapter 12. Full Text Search

speak of the tsvector as being the document, but of course it is only a compact representation of the
full document.

12.1.2. Basic Text Matching

Full text searching in PostgreSQL is based on the match operator @@, which returns true if a tsvector
(document) matches a t squery (query). It doesn’t matter which data type is written first:

SELECT "a fat cat sat on a mat and ate a fat rat’::tsvector @@ ’'cat & rat’::tsquery;
?column?

SELECT ’fat & cow’::tsquery @@ 'a fat cat sat on a mat and ate a fat rat’::tsvector;
?column?

As the above example suggests, a t squery is not just raw text, any more than a t svector is. A tsquery
contains search terms, which must be already-normalized lexemes, and may combine multiple terms using
AND, OR, and NOT operators. (For details see Section 8.11.) There are functions to_tsquery and
plainto_tsquery that are helpful in converting user-written text into a proper tsquery, for example
by normalizing words appearing in the text. Similarly, to_tsvector is used to parse and normalize a
document string. So in practice a text search match would look more like this:

SELECT to_tsvector (' fat cats ate fat rats’) @@ to_tsquery(’fat & rat’);
?column?

Observe that this match would not succeed if written as

SELECT ' fat cats ate fat rats’::tsvector @@ to_tsquery(’fat & rat’);
?column?

since here no normalization of the word rat s will occur. The elements of a t svector are lexemes, which
are assumed already normalized, so rats does not match rat.

The @@ operator also supports text input, allowing explicit conversion of a text string to tsvector or
tsquery to be skipped in simple cases. The variants available are:

tsvector @@ tsquery
tsquery @@ tsvector
text Q@ tsquery

text Q@ text

298

Chapter 12. Full Text Search

The first two of these we saw already. The form text @@ tsquery is equivalent to to_tsvector (x)
@@ y. The form text @@ text is equivalent to to_tsvector (x) @R plainto_tsquery(y).

12.1.3. Configurations

The above are all simple text search examples. As mentioned before, full text search functionality includes
the ability to do many more things: skip indexing certain words (stop words), process synonyms, and use
sophisticated parsing, e.g., parse based on more than just white space. This functionality is controlled by
text search configurations. PostgreSQL comes with predefined configurations for many languages, and
you can easily create your own configurations. (psql’s \dF command shows all available configurations.)

During installation an appropriate configuration is selected and default_text_search_config is set accord-
ingly in postgresqgl.conf. If you are using the same text search configuration for the entire cluster you
can use the value in postgresqgl.conf. To use different configurations throughout the cluster but the
same configuration within any one database, use ALTER DATABASE ... SET. Otherwise, you can set
default_text_search_config in each session.

Each text search function that depends on a configuration has an optional regconfig argument, so that
the configuration to use can be specified explicitly. default_text_search_config is used only when
this argument is omitted.

To make it easier to build custom text search configurations, a configuration is built up from simpler
database objects. PostgreSQL’s text search facility provides four types of configuration-related database
objects:

+ Text search parsers break documents into tokens and classify each token (for example, as words or
numbers).

« Text search dictionaries convert tokens to normalized form and reject stop words.

 Text search templates provide the functions underlying dictionaries. (A dictionary simply specifies a
template and a set of parameters for the template.)

« Text search configurations select a parser and a set of dictionaries to use to normalize the tokens pro-
duced by the parser.

Text search parsers and templates are built from low-level C functions; therefore it requires C program-
ming ability to develop new ones, and superuser privileges to install one into a database. (There are
examples of add-on parsers and templates in the contrib/ area of the PostgreSQL distribution.) Since
dictionaries and configurations just parameterize and connect together some underlying parsers and tem-
plates, no special privilege is needed to create a new dictionary or configuration. Examples of creating
custom dictionaries and configurations appear later in this chapter.

12.2. Tables and Indexes

The examples in the previous section illustrated full text matching using simple constant strings. This
section shows how to search table data, optionally using indexes.

299

Chapter 12. Full Text Search

12.2.1. Searching a Table

It is possible to do a full text search without an index. A simple query to print the title of each row that
contains the word friend in its body field is:

SELECT title
FROM pgweb
WHERE to_tsvector (’english’, body) @@ to_tsquery(’english’, ’friend’);

This will also find related words such as friends and friendly, since all these are reduced to the same
normalized lexeme.

The query above specifies that the english configuration is to be used to parse and normalize the strings.
Alternatively we could omit the configuration parameters:

SELECT title
FROM pgweb
WHERE to_tsvector (body) @Q@ to_tsquery(’friend’);

This query will use the configuration set by default_text_search_config.

A more complex example is to select the ten most recent documents that contain create and table in
the title or body:

SELECT title

FROM pgweb

WHERE to_tsvector(title || 7 ' || body) @@ to_tsquery(’create & table’)
ORDER BY last_mod_date DESC

LIMIT 10;

For clarity we omitted the coalesce function calls which would be needed to find rows that contain NULL
in one of the two fields.

Although these queries will work without an index, most applications will find this approach too slow,
except perhaps for occasional ad-hoc searches. Practical use of text searching usually requires creating an
index.

12.2.2. Creating Indexes

We can create a GIN index (Section 12.9) to speed up text searches:
CREATE INDEX pgweb_idx ON pgweb USING gin(to_tsvector (’english’, body));

Notice that the 2-argument version of to_tsvector is used. Only text search functions that specify a
configuration name can be used in expression indexes (Section 11.7). This is because the index contents
must be unaffected by default_text_search_config. If they were affected, the index contents might be
inconsistent because different entries could contain t svectors that were created with different text search
configurations, and there would be no way to guess which was which. It would be impossible to dump
and restore such an index correctly.

Because the two-argument version of to_tsvector was used in the index above, only a query reference
that uses the 2-argument version of to_tsvector with the same configuration name will use that in-
dex. That is, WHERE to_tsvector (english’, body) @@ ’a & b’ can use the index, but WHERE

300

Chapter 12. Full Text Search

to_tsvector (body) @@ ’a & b’ cannot. This ensures that an index will be used only with the same
configuration used to create the index entries.

It is possible to set up more complex expression indexes wherein the configuration name is specified by
another column, e.g.:

CREATE INDEX pgweb_idx ON pgweb USING gin(to_tsvector (config_name, body));

where config_name is a column in the pgweb table. This allows mixed configurations in the same index
while recording which configuration was used for each index entry. This would be useful, for example,
if the document collection contained documents in different languages. Again, queries that are meant to
use the index must be phrased to match, e.g., WHERE to_tsvector (config_name, body) QR ’'a &
b’.

Indexes can even concatenate columns:

CREATE INDEX pgweb_idx ON pgweb USING gin(to_tsvector (’english’, title || " 7 || body));

Another approach is to create a separate tsvector column to hold the output of to_tsvector. This
example is a concatenation of title and body, using coalesce to ensure that one field will still be
indexed when the other is NULL:

ALTER TABLE pgweb ADD COLUMN textsearchable_index_col tsvector;
UPDATE pgweb SET textsearchable_index_col =
to_tsvector (’english’, coalesce(title,”) || * ' || coalesce(body,”));

Then we create a GIN index to speed up the search:

CREATE INDEX textsearch_idx ON pgweb USING gin(textsearchable_index_col);

Now we are ready to perform a fast full text search:

SELECT title

FROM pgweb

WHERE textsearchable_index_col @@ to_tsquery(’create & table’)
ORDER BY last_mod_date DESC

LIMIT 10;

When using a separate column to store the t svector representation, it is necessary to create a trigger to
keep the tsvector column current anytime title or body changes. Section 12.4.3 explains how to do
that.

One advantage of the separate-column approach over an expression index is that it is not necessary to
explicitly specify the text search configuration in queries in order to make use of the index. As shown
in the example above, the query can depend on default_text_search_config. Another advantage
is that searches will be faster, since it will not be necessary to redo the to_tsvector calls to verify
index matches. (This is more important when using a GiST index than a GIN index; see Section 12.9.)
The expression-index approach is simpler to set up, however, and it requires less disk space since the
tsvector representation is not stored explicitly.

301

Chapter 12. Full Text Search

12.3. Controlling Text Search

To implement full text searching there must be a function to create a t svector from a document and a
tsquery from a user query. Also, we need to return results in a useful order, so we need a function that
compares documents with respect to their relevance to the query. It’s also important to be able to display
the results nicely. PostgreSQL provides support for all of these functions.

12.3.1. Parsing Documents

PostgreSQL provides the function to_tsvector for converting a document to the t svector data type.

to_tsvector ([config regconfig,] document text) returns tsvector

to_tsvector parses a textual document into tokens, reduces the tokens to lexemes, and returns a
tsvector which lists the lexemes together with their positions in the document. The document is
processed according to the specified or default text search configuration. Here is a simple example:

SELECT to_tsvector (’english’, 'a fat cat sat on a mat - it ate a fat rats’);
to_tsvector

In the example above we see that the resulting tsvector does not contain the words a, on, or it, the
word rats became rat, and the punctuation sign — was ignored.

The to_tsvector function internally calls a parser which breaks the document text into tokens and
assigns a type to each token. For each token, a list of dictionaries (Section 12.6) is consulted, where
the list can vary depending on the token type. The first dictionary that recognizes the token emits one
or more normalized lexemes to represent the token. For example, rats became rat because one of the
dictionaries recognized that the word rats is a plural form of rat. Some words are recognized as stop
words (Section 12.6.1), which causes them to be ignored since they occur too frequently to be useful in
searching. In our example these are a, on, and it. If no dictionary in the list recognizes the token then
it is also ignored. In this example that happened to the punctuation sign — because there are in fact no
dictionaries assigned for its token type (Space symbols), meaning space tokens will never be indexed.
The choices of parser, dictionaries and which types of tokens to index are determined by the selected
text search configuration (Section 12.7). It is possible to have many different configurations in the same
database, and predefined configurations are available for various languages. In our example we used the
default configuration english for the English language.

The function setweight can be used to label the entries of a tsvector with a given weight, where a
weight is one of the letters A, B, C, or D. This is typically used to mark entries coming from different parts
of a document, such as title versus body. Later, this information can be used for ranking of search results.

Because to_tsvector(NULL) will return NULL, it is recommended to use coalesce whenever a field
might be null. Here is the recommended method for creating a t svector from a structured document:

UPDATE tt SET ti =
setweight (to_tsvector (coalesce(title,”)), ’'A") |
setweight (to_tsvector (coalesce (keyword,”)), 'B’) |
setweight (to_tsvector (coalesce (abstract,”)), 'C’) ||

302

Chapter 12. Full Text Search
setweight (to_tsvector (coalesce (body,”)), 'D’');

Here we have used setweight to label the source of each lexeme in the finished tsvector, and then
merged the labeled tsvector values using the tsvector concatenation operator | |. (Section 12.4.1
gives details about these operations.)

12.3.2. Parsing Queries

PostgreSQL provides the functions to_tsquery and plainto_tsquery for converting a query to the
tsquery data type. to_tsquery offers access to more features than plainto_tsquery, but is less
forgiving about its input.

to_tsquery ([config regconfig,] querytext text) returns tsquery

to_tsquery creates a t squery value from querytext, which must consist of single tokens separated
by the Boolean operators &« (AND), | (OR) and ! (NOT). These operators can be grouped using parenthe-
ses. In other words, the input to to_t squery must already follow the general rules for t squery input, as
described in Section 8.11. The difference is that while basic t squery input takes the tokens at face value,
to_tsquery normalizes each token to a lexeme using the specified or default configuration, and discards
any tokens that are stop words according to the configuration. For example:

SELECT to_tsquery(’english’, ’'The & Fat & Rats’);
to_tsquery

As in basic t squery input, weight(s) can be attached to each lexeme to restrict it to match only t svector
lexemes of those weight(s). For example:

SELECT to_tsquery(’english’, 'Fat | Rats:AB’);
to_tsquery

Also, = can be attached to a lexeme to specify prefix matching:

SELECT to_tsquery (' supern:*A & star:AxB’);
to_tsquery

Such a lexeme will match any word in a t svector that begins with the given string.

to_tsquery can also accept single-quoted phrases. This is primarily useful when the configuration in-
cludes a thesaurus dictionary that may trigger on such phrases. In the example below, a thesaurus contains

the rule supernovae stars : sn:
SELECT to_tsquery (”’supernovae stars” & !crab’);

to_tsquery

303

Chapter 12. Full Text Search

Without quotes, to_tsquery will generate a syntax error for tokens that are not separated by an AND or
OR operator.

plainto_tsquery ([config regconfig,] querytext text) returns tsquery

plainto_tsquery transforms unformatted text querytext to tsquery. The text is parsed and nor-
malized much as for to_tsvector, then the s (AND) Boolean operator is inserted between surviving
words.

Example:

SELECT plainto_tsquery (’english’, ’'The Fat Rats’);
plainto_tsquery

"fat’ & 'rat’

Note that plainto_tsquery cannot recognize Boolean operators, weight labels, or prefix-match labels
in its input:

SELECT plainto_tsquery(’english’, ’'The Fat & Rats:C’);
plainto_tsquery

Here, all the input punctuation was discarded as being space symbols.

12.3.3. Ranking Search Results

Ranking attempts to measure how relevant documents are to a particular query, so that when there are
many matches the most relevant ones can be shown first. PostgreSQL provides two predefined ranking
functions, which take into account lexical, proximity, and structural information; that is, they consider
how often the query terms appear in the document, how close together the terms are in the document, and
how important is the part of the document where they occur. However, the concept of relevancy is vague
and very application-specific. Different applications might require additional information for ranking, e.g.,
document modification time. The built-in ranking functions are only examples. You can write your own
ranking functions and/or combine their results with additional factors to fit your specific needs.

The two ranking functions currently available are:

ts_rank ([weights float4[],] vector tsvector,

query tsquery [, normalization integer]) returns floatd
Standard ranking function.
ts_rank_cd([weights float4[],] vector tsvector,
query tsquery [, normalization integer]) returns float4

This function computes the cover density ranking for the given document vector and query, as de-
scribed in Clarke, Cormack, and Tudhope’s "Relevance Ranking for One to Three Term Queries" in
the journal "Information Processing and Management", 1999.

This function requires positional information in its input. Therefore it will not work on “stripped”
tsvector values — it will always return zero.

304

Chapter 12. Full Text Search

For both these functions, the optional weights argument offers the ability to weigh word instances more
or less heavily depending on how they are labeled. The weight arrays specify how heavily to weigh each
category of word, in the order:

{D-weight, C-weight, B-weight, A-weight}
If no weights are provided, then these defaults are used:

{0.1, 0.2, 0.4, 1.0}

Typically weights are used to mark words from special areas of the document, like the title or an initial
abstract, so they can be treated with more or less importance than words in the document body.

Since a longer document has a greater chance of containing a query term it is reasonable to take into
account document size, e.g., a hundred-word document with five instances of a search word is probably
more relevant than a thousand-word document with five instances. Both ranking functions take an integer
normalization option that specifies whether and how a document’s length should impact its rank. The
integer option controls several behaviors, so it is a bit mask: you can specify one or more behaviors using
| (for example, 2 | 4).

+ 0 (the default) ignores the document length

1 divides the rank by 1 + the logarithm of the document length

+ 2 divides the rank by the document length

+ 4 divides the rank by the mean harmonic distance between extents (this is implemented only by
ts_rank_cd)

8 divides the rank by the number of unique words in document

+ 16 divides the rank by 1 + the logarithm of the number of unique words in document

+ 32 divides the rank by itself + 1

If more than one flag bit is specified, the transformations are applied in the order listed.

It is important to note that the ranking functions do not use any global information, so it is impos-
sible to produce a fair normalization to 1% or 100% as sometimes desired. Normalization option 32
(rank/ (rank+1)) can be applied to scale all ranks into the range zero to one, but of course this is just a
cosmetic change; it will not affect the ordering of the search results.

Here is an example that selects only the ten highest-ranked matches:

SELECT title, ts_rank_cd(textsearch, query) AS rank
FROM apod, to_tsquery(’neutrino| (dark & matter)’) query
WHERE query Q@ textsearch

ORDER BY rank DESC

LIMIT 10;
title | rank

,,, b
Neutrinos in the Sun | 3.1
The Sudbury Neutrino Detector | 2.4
A MACHO View of Galactic Dark Matter | 2.01317
Hot Gas and Dark Matter | 1.91171
The Virgo Cluster: Hot Plasma and Dark Matter | 1.90953
Rafting for Solar Neutrinos | 1.9

305

Chapter 12. Full Text Search

NGC 4650A: Strange Galaxy and Dark Matter | 1.85774
Hot Gas and Dark Matter | 1.6123
Ice Fishing for Cosmic Neutrinos | 1.6
Weak Lensing Distorts the Universe | 0.818218

This is the same example using normalized ranking:

SELECT title, ts_rank_cd(textsearch, query, 32 /% rank/(rank+1l) =/) AS rank
FROM apod, to_tsquery(’neutrino| (dark & matter)’) query

WHERE query (@@ textsearch

ORDER BY rank DESC

LIMIT 10;

|

+

Neutrinos in the Sun | 0.756097569485493

The Sudbury Neutrino Detector | 0.705882361190954

A MACHO View of Galactic Dark Matter | 0.668123210574724

Hot Gas and Dark Matter | 0.65655958650282
|
|
|
|
|
|

The Virgo Cluster: Hot Plasma and Dark Matter 0.656301290640973
Rafting for Solar Neutrinos 0.655172410958162
NGC 4650A: Strange Galaxy and Dark Matter 0.650072921219637
Hot Gas and Dark Matter 0.617195790024749
Ice Fishing for Cosmic Neutrinos 0.615384618911517
Weak Lensing Distorts the Universe 0.450010798361481

Ranking can be expensive since it requires consulting the t svector of each matching document, which
can be I/O bound and therefore slow. Unfortunately, it is almost impossible to avoid since practical queries
often result in large numbers of matches.

12.3.4. Highlighting Results

To present search results it is ideal to show a part of each document and how it is related to the query.
Usually, search engines show fragments of the document with marked search terms. PostgreSQL provides
a function ts_headline that implements this functionality.

ts_headline ([config regconfig,] document text, query tsquery [, options text]) returns text

ts_headline accepts a document along with a query, and returns an excerpt from the document in which
terms from the query are highlighted. The configuration to be used to parse the document can be specified
by config;ﬂ?configisOnﬂﬁed,ﬂk:default_text_search_configConﬁguraﬁonisused

If an opt ions string is specified it must consist of a comma-separated list of one or more opt ion=value
pairs. The available options are:

+ StartSel, StopSel: the strings with which to delimit query words appearing in the document, to dis-
tinguish them from other excerpted words. You must double-quote these strings if they contain spaces
or commas.

+ MaxWords, MinWords: these numbers determine the longest and shortest headlines to output.

306

Chapter 12. Full Text Search

+ ShortWord: words of this length or less will be dropped at the start and end of a headline. The default
value of three eliminates common English articles.

+ HighlightAll: Boolean flag; if t rue the whole document will be used as the headline, ignoring the
preceding three parameters.

+ MaxFragments: maximum number of text excerpts or fragments to display. The default value of zero
selects a non-fragment-oriented headline generation method. A value greater than zero selects fragment-
based headline generation. This method finds text fragments with as many query words as possible and
stretches those fragments around the query words. As a result query words are close to the middle of
each fragment and have words on each side. Each fragment will be of at most MaxWords and words of
length shortwWord or less are dropped at the start and end of each fragment. If not all query words are
found in the document, then a single fragment of the first MinWords in the document will be displayed.

+ FragmentDelimiter: When more than one fragment is displayed, the fragments will be separated by
this string.

Any unspecified options receive these defaults:

StartSel=, StopSel=,
MaxWords=35, MinWords=15, ShortWord=3, HighlightAll=FALSE,
MaxFragments=0, FragmentDelimiter=" ... "

For example:

SELECT ts_headline(’english’,

"The most common type of search
is to find all documents containing given query terms
and return them in order of their similarity to the
query.’,

to_tsquery ('query & similarity’));

ts_headline

containing given query terms

and return them in order of their similarity to the
query.

SELECT ts_headline (’english’,
"The most common type of search
is to find all documents containing given query terms
and return them in order of their similarity to the
query.’,
to_tsquery ('query & similarity’),
'StartSel = <, StopSel = >');
ts_headline
containing given <query> terms
and return them in order of their <similarity> to the
<query>.

307

Chapter 12. Full Text Search

ts_headline uses the original document, not a tsvector summary, so it can be slow and should be
used with care. A typical mistake is to call ts_headline for every matching document when only ten
documents are to be shown. SQL subqueries can help; here is an example:

SELECT id, ts_headline (body, g), rank
FROM (SELECT id, body, g, ts_rank_cd(ti, g) AS rank
FROM apod, to_tsquery(’'stars’) g
WHERE ti @@ g
ORDER BY rank DESC
LIMIT 10) AS foo;

12.4. Additional Features

This section describes additional functions and operators that are useful in connection with text search.

12.4.1. Manipulating Documents

Section 12.3.1 showed how raw textual documents can be converted into tsvector values. PostgreSQL
also provides functions and operators that can be used to manipulate documents that are already in
tsvector form.

tsvector || tsvector

The tsvector concatenation operator returns a vector which combines the lexemes and positional
information of the two vectors given as arguments. Positions and weight labels are retained during
the concatenation. Positions appearing in the right-hand vector are offset by the largest position
mentioned in the left-hand vector, so that the result is nearly equivalent to the result of performing
to_tsvector on the concatenation of the two original document strings. (The equivalence is not
exact, because any stop-words removed from the end of the left-hand argument will not affect the
result, whereas they would have affected the positions of the lexemes in the right-hand argument if
textual concatenation were used.)

One advantage of using concatenation in the vector form, rather than concatenating text before ap-
plying to_tsvector, is that you can use different configurations to parse different sections of the
document. Also, because the setweight function marks all lexemes of the given vector the same
way, it is necessary to parse the text and do setweight before concatenating if you want to label
different parts of the document with different weights.

setweight (vector tsvector, weight "char") returns tsvector

setweight returns a copy of the input vector in which every position has been labeled with the
given weight, either A, B, C, or D. (D is the default for new vectors and as such is not displayed on
output.) These labels are retained when vectors are concatenated, allowing words from different parts
of a document to be weighted differently by ranking functions.

Note that weight labels apply to positions, not lexemes. If the input vector has been stripped of
positions then setweight does nothing.

308

Chapter 12. Full Text Search

length (vector tsvector) returns integer

Returns the number of lexemes stored in the vector.

strip(vector tsvector) returns tsvector

Returns a vector which lists the same lexemes as the given vector, but which lacks any position
or weight information. While the returned vector is much less useful than an unstripped vector for
relevance ranking, it will usually be much smaller.

12.4.2. Manipulating Queries

Section 12.3.2 showed how raw textual queries can be converted into t squery values. PostgreSQL also
provides functions and operators that can be used to manipulate queries that are already in t squery form.

tsquery && tsquery

Returns the AND-combination of the two given queries.

tsquery || tsquery

Returns the OR-combination of the two given queries.

'l tsquery

Returns the negation (NOT) of the given query.

numnode (query tsquery) returns integer

Returns the number of nodes (lexemes plus operators) in a t squery. This function is useful to de-
termine if the query is meaningful (returns > 0), or contains only stop words (returns 0). Examples:

SELECT numnode (plainto_tsquery (' the any’));
NOTICE: query contains only stopword(s) or doesn’t contain lexeme(s), ignored
numnode

SELECT numnode (' foo & bar’::tsquery);
numnode

querytree (query tsquery) returns text

Returns the portion of a t squery that can be used for searching an index. This function is useful for
detecting unindexable queries, for example those containing only stop words or only negated terms.
For example:

SELECT querytree (to_tsquery(’!defined’));
querytree

309

Chapter 12. Full Text Search

12.4.2.1. Query Rewriting

The ts_rewrite family of functions search a given tsquery for occurrences of a target subquery, and
replace each occurrence with a substitute subquery. In essence this operation is a t squery-specific version
of substring replacement. A target and substitute combination can be thought of as a query rewrite rule.
A collection of such rewrite rules can be a powerful search aid. For example, you can expand the search
using synonyms (e.g., new york, big apple, nyc, gotham) or narrow the search to direct the user to
some hot topic. There is some overlap in functionality between this feature and thesaurus dictionaries
(Section 12.6.4). However, you can modify a set of rewrite rules on-the-fly without reindexing, whereas
updating a thesaurus requires reindexing to be effective.

ts_rewrite (query tsquery, target tsquery, substitute tsquery) returns tsquery

This form of ts_rewrite simply applies a single rewrite rule: target is replaced by substitute
wherever it appears in query. For example:
SELECT ts_rewrite(’a & b’::tsquery, ’'a’::tsquery, ’c’::tsquery);

ts_rewrite

ts_rewrite (query tsquery, select text) returns tsquery

This form of ts_rewrite accepts a starting query and a SQL select command, which is given
as a text string. The select must yield two columns of t squery type. For each row of the select
result, occurrences of the first column value (the target) are replaced by the second column value (the
substitute) within the current query value. For example:

CREATE TABLE aliases (t tsquery PRIMARY KEY, s tsquery);
INSERT INTO aliases VALUES('a’, 'c’);

SELECT ts_rewrite(’a & b’ ::tsquery, ’SELECT t,s FROM aliases’);
ts_rewrite

Note that when multiple rewrite rules are applied in this way, the order of application can be impor-
tant; so in practice you will want the source query to ORDER BY some ordering key.

Let’s consider a real-life astronomical example. We’ll expand query supernovae using table-driven
rewriting rules:

CREATE TABLE aliases (t tsquery primary key, s tsquery);
INSERT INTO aliases VALUES (to_tsquery (’ supernovae’), to_tsquery (’supernovaelsn’));

SELECT ts_rewrite(to_tsquery ('’ supernovae & crab’), ’'SELECT x FROM aliases’);
ts_rewrite

"crab’ & ('"supernova’ | ’sn’)
We can change the rewriting rules just by updating the table:

UPDATE aliases
SET s = to_tsquery ('’ supernovae|sn & !nebulae’)
WHERE t = to_tsquery ('’ supernovae’);

310

Chapter 12. Full Text Search

SELECT ts_rewrite (to_tsquery (’supernovae & crab’), ’SELECT % FROM aliases’);
ts_rewrite

"crab’ & ('supernova’ | ’“sn’ & !’nebula’)

Rewriting can be slow when there are many rewriting rules, since it checks every rule for a possible match.
To filter out obvious non-candidate rules we can use the containment operators for the t squery type. In
the example below, we select only those rules which might match the original query:

SELECT ts_rewrite(’a & b’ ::tsquery,
"SELECT t,s FROM aliases WHERE ”a & b”::tsquery @> t’);
ts_rewrite

12.4.3. Triggers for Automatic Updates

When using a separate column to store the t svector representation of your documents, it is necessary
to create a trigger to update the tsvector column when the document content columns change. Two
built-in trigger functions are available for this, or you can write your own.

tsvector_update_trigger (tsvector_column_name, config_name, text_column_name [, ... 1)

tsvector_update_trigger_column (tsvector_column_name, config_column_name, text_column_name

These trigger functions automatically compute a t svector column from one or more textual columns,
under the control of parameters specified in the CREATE TRIGGER command. An example of their use is:

CREATE TABLE messages (

title text,
body text,
tsv tsvector

)

CREATE TRIGGER tsvectorupdate BEFORE INSERT OR UPDATE
ON messages FOR EACH ROW EXECUTE PROCEDURE
tsvector_update_trigger (tsv, ’'pg_catalog.english’, title, body);

INSERT INTO messages VALUES ('title here’, ’'the body text is here’);
SELECT * FROM messages;

title | body | tsv
____________ +_______________________+____________________________

title here | the body text is here | ’"bodi’:4 "text’:5 'titl’:1

SELECT title, body FROM messages WHERE tsv @@ to_tsquery(’title & body’);
title | body

311

Chapter 12. Full Text Search

____________ +_______________________
title here | the body text is here

Having created this trigger, any change in t it 1e or body will automatically be reflected into t sv, without
the application having to worry about it.

The first trigger argument must be the name of the tsvector column to be updated. The second
argument specifies the text search configuration to be used to perform the conversion. For
tsvector_update_trigger, the configuration name is simply given as the second trigger argument. It
must be schema-qualified as shown above, so that the trigger behavior will not change with changes
in search_path. For tsvector_update_trigger_column, the second trigger argument is the
name of another table column, which must be of type regconfig. This allows a per-row selection of
configuration to be made. The remaining argument(s) are the names of textual columns (of type text,
varchar, or char). These will be included in the document in the order given. NULL values will be
skipped (but the other columns will still be indexed).

A limitation of these built-in triggers is that they treat all the input columns alike. To process columns
differently — for example, to weight title differently from body — it is necessary to write a custom
trigger. Here is an example using PL/pgSQL as the trigger language:

CREATE FUNCTION messages_trigger () RETURNS trigger AS $$
begin
new.tsv :=
setweight (to_tsvector ('pg_catalog.english’, coalesce(new.title,”)), "A") ||
setweight (to_tsvector ('pg_catalog.english’, coalesce(new.body,”)), ’'D’);
return new;
end
$$ LANGUAGE plpgsql;

CREATE TRIGGER tsvectorupdate BEFORE INSERT OR UPDATE
ON messages FOR EACH ROW EXECUTE PROCEDURE messages_trigger();

Keep in mind that it is important to specify the configuration name explicitly when creating
tsvector values inside triggers, so that the column’s contents will not be affected by changes to
default_text_search_config. Failure to do this is likely to lead to problems such as search results
changing after a dump and reload.

12.4.4. Gathering Document Statistics

The function ts_stat is useful for checking your configuration and for finding stop-word candidates.

ts_stat (sglquery text, [weights text,]
OUT word text, OUT ndoc integer,
OUT nentry integer) returns setof record

sglgquery is a text value containing an SQL query which must return a single tsvector column.
ts_stat executes the query and returns statistics about each distinct lexeme (word) contained in the
tsvector data. The columns returned are

312

Chapter 12. Full Text Search

« word text — the value of a lexeme
« ndoc integer — number of documents (t svectors) the word occurred in
* nentry integer — total number of occurrences of the word

If weights is supplied, only occurrences having one of those weights are counted.

For example, to find the ten most frequent words in a document collection:

SELECT % FROM ts_stat (' SELECT vector FROM apod’)
ORDER BY nentry DESC, ndoc DESC, word
LIMIT 10;

The same, but counting only word occurrences with weight A or B:

SELECT » FROM ts_stat (" SELECT vector FROM apod’, ’"ab’)
ORDER BY nentry DESC, ndoc DESC, word
LIMIT 10;

12.5. Parsers

Text search parsers are responsible for splitting raw document text into tokens and identifying each token’s
type, where the set of possible types is defined by the parser itself. Note that a parser does not modify the
text at all — it simply identifies plausible word boundaries. Because of this limited scope, there is less
need for application-specific custom parsers than there is for custom dictionaries. At present PostgreSQL
provides just one built-in parser, which has been found to be useful for a wide range of applications.

The built-in parser is named pg_catalog.default. It recognizes 23 token types:

Table 12-1. Default Parser’s Token Types

Alias Description Example
asciiword Word, all ASCII letters elephant
word Word, all letters mafiana
numword Word, letters and digits betal
asciihword Hyphenated word, all ASCII up-to-date
hword Hyphenated word, all letters loégico-matematica
numhword Hyphenated word, letters and postgresgl-betal
digits
hword_asciipart Hyphenated word part, all ASCII | postgresql in the context
postgresgl-betal
hword_part Hyphenated word part, all letters | 16gico or matematica in the
context 1égico-matemdtica
hword_numpart Hyphenated word part, letters betal in the context
and digits postgresgl-betal

313

Chapter 12. Full Text Search

Alias Description Example

email Email address fooRexample.com

protocol Protocol head http://

url URL example.com/stuff/index.html

host Host example.com

url_path URL path /stuff/index.html, in the
context of a URL

file File or path name /usr/local/foo.txt, if not
within a URL

sfloat Scientific notation -1.234e56

float Decimal notation -1.234

int Signed integer -1234

uint Unsigned integer 1234

version Version number 8.3.0

tag XML tag

entity XML entity samp;

blank Space symbols (any whitespace or punctuation
not otherwise recognized)

Note: The parser’s notion of a “letter” is determined by the database’s locale setting, specifically
1c_ctype. Words containing only the basic ASCII letters are reported as a separate token type,
since it is sometimes useful to distinguish them. In most European languages, token types word
and asciiword should be treated alike.

email does not support all valid email characters as defined by RFC 5322. Specifically, the only
non-alphanumeric characters supported for email user names are period, dash, and underscore.

It is possible for the parser to produce overlapping tokens from the same piece of text. As an example, a
hyphenated word will be reported both as the entire word and as each component:

SELECT alias,