
FLAWFINDER(1) Flawfinder FLAWFINDER(1)

NAME
flawfinder − lexically find potential security flaws ("hits") in source code

SYNOPSIS
flawfinder [−−help|−h] [−−version] [−−listrules]

[−−allowlink] [−−followdotdir] [−−nolink]

[−−patch=filename|−P filename]

[−−inputs|−I] [−−minlevel=X | −m X] [−−falsepositive|−F]

[−−neverignore|−n]

[−−regex=PA TTERN | −e PA TTERN]

[−−context|−c] [−−columns|−C] [−−dataonly|−D] [−−html|−H] [−−immediate|-i] [−−singleline|−S]

[−−omittime] [−−quiet|−Q]

[−−loadhitlist=F] [−−savehitlist=F] [−−diffhitlist=F]

[−−] [source code file or source root directory]+

DESCRIPTION
Flawfinder searches through C/C++ source code looking for potential security flaws. To run flawfinder,

simply give flawfinder a list of directories or files. For each directory given, all files that have C/C++ file-

name extensions in that directory (and its subdirectories, recursively) will be examined. Thus, for most

projects, simply give flawfinder the name of the source code’s topmost directory (use ‘‘.’’ for the current

directory), and flawfinder will examine all of the project’s C/C++ source code. If you only want to have

changes reviewed, save a unified diff of those changes (created by GNU "diff -u" or "svn diff" or "git diff")

in a patch file and use the −−patch (−P) option.

Flawfinder will produce a list of ‘‘hits’’ (potential security flaws), sorted by risk; the riskiest hits are shown

first. The risk level is shown inside square brackets and varies from 0, very little risk, to 5, great risk. This

risk level depends not only on the function, but on the values of the parameters of the function. For exam-

ple, constant strings are often less risky than fully variable strings in many contexts, and in those contexts

the hit will have a lower risk level. Flawfinder knows about gettext (a common library for internationalized

programs) and will treat constant strings passed through gettext as though they were constant strings; this

reduces the number of false hits in internationalized programs. Flawfinder will do the same sort of thing

with _T() and _TEXT(), common Microsoft macros for handling internationalized programs. Flawfinder

correctly ignores most text inside comments and strings. Normally flawfinder shows all hits with a risk

level of at least 1, but you can use the −−minlevel option to show only hits with higher risk levels if you

wish. Hit descriptions also note the relevant Common Weakness Enumeration (CWE) identifier(s) in

parentheses, as discussed below. Flawfinder is officially CWE-Compatible. Hit descriptions with "[MS-

banned]" indicate functions that are in the banned list of functions released by Microsoft; see

http://msdn.microsoft.com/en-us/library/bb288454.aspx for more information about banned functions.

Not every hit is actually a security vulnerability, and not every security vulnerability is necessarily found.

Nevertheless, flawfinder can be an aid in finding and removing security vulnerabilities. A common way to

use flawfinder is to first apply flawfinder to a set of source code and examine the highest-risk items. Then,

use −−inputs to examine the input locations, and check to make sure that only legal and safe input values

are accepted from untrusted users.

Once you’ve audited a program, you can mark source code lines that are actually fine but cause spurious

warnings so that flawfinder will stop complaining about them. To mark a line so that these warnings are

suppressed, put a specially-formatted comment either on the same line (after the source code) or all by

itself in the previous line. The comment must have one of the two following formats:

• // Flawfinder: ignore

• /* Flawfinder: ignore */

For compatibility’s sake, you can replace "Flawfinder:" with "ITS4:" or "RATS:" in these specially-format-

ted comments. Since it’s possible that such lines are wrong, you can use the −−neverignore option, which

causes flawfinder to never ignore any line no matter what the comment directives say (more confusingly,

−−neverignore ignores the ignores).

Flawfinder uses an internal database called the ‘‘ruleset’’; the ruleset identifies functions that are common

Flawfinder 3 Aug 2014 1

FLAWFINDER(1) Flawfinder FLAWFINDER(1)

causes of security flaws. The standard ruleset includes a large number of different potential problems,

including both general issues that can impact any C/C++ program, as well as a number of specific Unix-like

and Windows functions that are especially problematic. The −−listrules option reports the list of current

rules and their default risk levels. As noted above, every potential security flaw found in a given source

code file (matching an entry in the ruleset) is called a ‘‘hit,’’ and the set of hits found during any particular

run of the program is called the ‘‘hitlist.’’ Hitlists can be saved (using −−savehitlist), reloaded back for

redisplay (using −−loadhitlist), and you can show only the hits that are different from another run (using

−−diffhitlist).

Flawfinder is a simple tool, leading to some fundamental pros and cons. Flawfinder works by doing simple

lexical tokenization (skipping comments and correctly tokenizing strings), looking for token matches to the

database (particularly to find function calls). Flawfinder is thus similar to RATS and ITS4, which also use

simple lexical tokenization. Flawfinder then examines the text of the function parameters to estimate risk.

Unlike tools such as splint, gcc’s warning flags, and clang, flawfinder does not use or have access to infor-

mation about control flow, data flow, or data types when searching for potential vulnerabilities or estimating

the level of risk. Thus, flawfinder will necessarily produce many false positives for vulnerabilities and fail

to report many vulnerabilities. On the other hand, flawfinder can find vulnerabilities in programs that can-

not be built or cannot be linked. It can often work with programs that cannot even be compiled (at least by

the reviewer’s tools). Flawfinder also doesn’t get as confused by macro definitions and other oddities that

more sophisticated tools have trouble with. Flawfinder can also be useful as a simple introduction to static

analysis tools in general, since it is easy to start using and easy to understand.

Any filename given on the command line will be examined (even if it doesn’t hav e a usual C/C++ filename

extension); thus you can force flawfinder to examine any specific files you desire. While searching directo-

ries recursively, flawfinder only opens and examines regular files that have C/C++ filename extensions.

Flawfinder presumes that files are C/C++ files if they hav e the extensions ".c", ".h", ".ec", ".ecp", ".pgc",

".C", ".cpp", ".CPP", ".cxx", ".cc", ".CC", ".pcc", ".hpp", or ".H". The filename ‘‘−’’ means the standard

input. To prevent security problems, special files (such as device special files and named pipes) are always

skipped, and by default symbolic links are skipped (the −−allowlink option follows symbolic links).

After the list of hits is a brief summary of the results (use -D to remove this information). It will show the

number of hits, lines analyzed (as reported by wc −l), and the physical source lines of code (SLOC) ana-

lyzed. A physical SLOC is a non-blank, non-comment line. It will then show the number of hits at each

level; note that there will never be a hit at a level lower than minlevel (1 by default). Thus, "[0] 0 [1] 9"

means that at level 0 there were 0 hits reported, and at level 1 there were 9 hits reported. It will next show

the number of hits at a given lev el or larger (so level 3+ has the sum of the number of hits at level 3, 4, and

5). Thus, an entry of "[0+] 37" shows that at level 0 or higher there were 37 hits (the 0+ entry will always

be the same as the "hits" number above). Hits per KSLOC is next shown; this is each of the "level or

higher" values multiplied by 1000 and divided by the physical SLOC. If symlinks were skipped, the count

of those is reported. If hits were suppressed (using the "ignore" directive in source code comments as

described above), the number suppressed is reported. The minimum risk level to be included in the report

is displayed; by default this is 1 (use −−minlevel to change this). The summary ends with important

reminders: Not every hit is necessarily a security vulnerability, and there may be other security vulnerabili-

ties not reported by the tool.

Flawfinder is released under the GNU GPL license version 2 or later (GPLv2+).

Flawfinder works similarly to another program, ITS4, which is not fully open source software (as defined in

the Open Source Definition) nor free software (as defined by the Free Software Foundation). The author of

Flawfinder has never seen ITS4’s source code.

BRIEF TUTORIAL
Here’s a brief example of how flawfinder might be used. Imagine that you have the C/C++ source code for

some program named xyzzy (which you may or may not have written), and you’re searching for security

vulnerabilities (so you can fix them before customers encounter the vulnerabilities). For this tutorial, I’ll

assume that you’re using a Unix-like system, such as Linux, OpenBSD, or MacOS X.

If the source code is in a subdirectory named xyzzy, you would probably start by opening a text window

Flawfinder 3 Aug 2014 2

FLAWFINDER(1) Flawfinder FLAWFINDER(1)

and using flawfinder’s default settings, to analyze the program and report a prioritized list of potential secu-

rity vulnerabilities (the ‘‘less’’ just makes sure the results stay on the screen):

flawfinder xyzzy | less

At this point, you will see a large number of entries. Each entry has a filename, a colon, a line number, a

risk level in brackets (where 5 is the most risky), a category, the name of the function, and a description of

why flawfinder thinks the line is a vulnerability. Flawfinder normally sorts by risk level, showing the riski-

est items first; if you have limited time, it’s probably best to start working on the riskiest items and continue

until you run out of time. If you want to limit the display to risks with only a certain risk level or higher,

use the −−minlevel option. If you’re getting an extraordinary number of false positives because variable

names look like dangerous function names, use the −F option to remove reports about them. If you don’t

understand the error message, please see documents such as the Writing Secure Pro grams for Linux and

Unix HOWTO 〈http://www.dwheeler.com/secure-programs〉 at http://www.dwheeler.com/secure-programs

which provides more information on writing secure programs.

Once you identify the problem and understand it, you can fix it. Occasionally you may want to re-do the

analysis, both because the line numbers will change and to make sure that the new code doesn’t introduce

yet a different vulnerability.

If you’ve determined that some line isn’t really a problem, and you’re sure of it, you can insert just before

or on the offending line a comment like

/* Flawfinder: ignore */

to keep them from showing up in the output.

Once you’ve done that, you should go back and search for the program’s inputs, to make sure that the pro-

gram strongly filters any of its untrusted inputs. Flawfinder can identify many program inputs by using the

−−inputs option, like this:

flawfinder −−inputs xyzzy

Flawfinder can integrate well with text editors and integrated development environments; see the examples

for more information.

Flawfinder includes many other options, including ones to create HTML versions of the output (useful for

prettier displays). The next section describes those options in more detail.

OPTIONS
Flawfinder has a number of options, which can be grouped into options that control its own documentation,

select input data, select which hits to display, select the output format, and perform hitlist management.

The commonly-used flawfinder options support the standard option syntax defined in the POSIX (Issue 7,

2013 Edition) section ‘‘Utility Conventions’’. Flawfinder also supports the GNU long options (double-dash

options of form −−option) as defined in the GNU C Library Reference Manual ‘‘Program Argument Syntax

Conventions’’ and GNU Coding Standards ‘‘Standards for Command Line Interfaces’’. Long option argu-

ments can be provided as ‘‘--name=value’’ or ‘‘-name value’’. All options can be accessed using the more

readable GNU long option conventions; some less commonly used options can only be accessed using long

option conventions.

Documentation

−−help

−h Show usage (help) information.

−−version Shows (just) the version number and exits.

−−listrules List the terms (tokens) that trigger further examination, their default risk level, and the

default warning (including the CWE identifier(s), if applicable), all tab-separated. The terms

are primarily names of potentially-dangerous functions. Note that the reported risk level and

Flawfinder 3 Aug 2014 3

FLAWFINDER(1) Flawfinder FLAWFINDER(1)

warning for some specific code may be different than the default, depending on how the term

is used. Combine with −D if you do not want the usual header. Flawfinder version 1.29

changed the separator from spaces to tabs, and added the default warning field.

Selecting Input Data

−−allowlink Allow the use of symbolic links; normally symbolic links are skipped. Don’t use this option

if you’re analyzing code by others; attackers could do many things to cause problems for an

analysis with this option enabled. For example, an attacker could insert symbolic links to

files such as /etc/passwd (leaking information about the file) or create a circular loop, which

would cause flawfinder to run ‘‘forever’’. Another problem with enabling this option is that

if the same file is referenced multiple times using symbolic links, it will be analyzed multi-

ple times (and thus reported multiple times). Note that flawfinder already includes some

protection against symbolic links to special file types such as device file types (e.g.,

/dev/zero or C:\mystuff\com1). Note that for flawfinder version 1.01 and before, this was

the default.

−−followdotdir

Enter directories whose names begin with ".". Normally such directories are ignored, since

they normally include version control private data (such as .git/ or .svn/), build metadata

(such as .makepp), configuration information, and so on.

−−nolink Ignored. Historically this disabled following symbolic links; this behavior is now the

default.

−−patch=patchfile

−P patchfile Examine the selected files or directories, but only report hits in lines that are added or modi-

fied by the given patch file. The patch file must be in a recognized unified diff format (e.g.,

the output of GNU "diff -u old new", "svn diff", or "git diff [commit]"). Flawfinder assumes

that the patch has already been applied to the files. The patch file can also include changes

to irrelevant files (they will simply be ignored). The line numbers given in the patch file are

used to determine which lines were changed, so if you have modified the files since the

patch file was created, regenerate the patch file first. Beware that the file names of the new

files given in the patch file must match exactly, including upper/lower case, path prefix, and

directory separator (\ vs. /). Only unified diff format is accepted (GNU diff, svn diff, and git

diff output is okay); if you have a different format, again regenerate it first. Only hits that

occur on resultant changed lines, or immediately above and below them, are reported. This

option implies −−neverignore.

Selecting Hits to Display

−−inputs

−I Show only functions that obtain data from outside the program; this also sets minlevel to 0.

−−minlevel=X

-m X Set minimum risk level to X for inclusion in hitlist. This can be from 0 (‘‘no risk’’) to 5 (‘‘maxi-

mum risk’’); the default is 1.

−−falsepositive

−F Do not include hits that are likely to be false positives. Currently, this means that function names

are ignored if they’re not followed by "(", and that declarations of character arrays aren’t noted.

Flawfinder 3 Aug 2014 4

FLAWFINDER(1) Flawfinder FLAWFINDER(1)

Thus, if you have use a variable named "access" everywhere, this will eliminate references to this

ordinary variable. This isn’t the default, because this also increases the likelihood of missing

important hits; in particular, function names in #define clauses and calls through function pointers

will be missed.

−−neverignore

-n Never ignore security issues, even if they hav e an ‘‘ignore’’ directive in a comment.

−−regexp=PA TTERN

-e PA TTERN

Only report hits with text that matches the regular expression pattern PATTERN. For example, to

only report hits containing the text "CWE-120", use ‘‘−−regex CWE-120’’. These option flag

names are the same as grep.

Selecting Output Format

−−columns

−C Show the column number (as well as the file name and line number) of each hit; this is

shown after the line number by adding a colon and the column number in the line (the first

character in a line is column number 1). This is useful for editors that can jump to specific

columns, or for integrating with other tools (such as those to further filter out false posi-

tives).

−−context

−c Show context, i.e., the line having the "hit"/potential flaw. By default the line is shown

immediately after the warning.

−−dataonly

−D Don’t display the header and footer. Use this along with −−quiet to see just the data itself.

−−html

−H Format the output as HTML instead of as simple text.

−−immediate

-i Immediately display hits (don’t just wait until the end).

−−singleline

-S Display as single line of text output for each hit. Useful for interacting with compilation

tools.

−−omittime Omit timing information. This is useful for regression tests of flawfinder itself, so that the

output doesn’t vary depending on how long the analysis takes.

−−quiet

−Q Don’t display status information (i.e., which files are being examined) while the analysis is

going on.

Flawfinder 3 Aug 2014 5

FLAWFINDER(1) Flawfinder FLAWFINDER(1)

Hitlist Management

−−savehitlist=F

Save all resulting hits (the "hitlist") to F.

−−loadhitlist=F

Load the hitlist from F instead of analyzing source programs. Warning: Do not load hitlists

from untrusted sources (for security reasons).

−−diffhitlist=F

Show only hits (loaded or analyzed) not in F. F was presumably created previously using

−−savehitlist. Warning: Do not diff hitlists from untrusted sources (for security reasons). If

the −−loadhitlist option is not provided, this will show the hits in the analyzed source code

files that were not previously stored in F. If used along with −−loadhitlist, this will show the

hits in the loaded hitlist not in F. The difference algorithm is conservative; hits are only con-

sidered the ‘‘same’’ if they hav e the same filename, line number, column position, function

name, and risk level.

EXAMPLES
Here are various examples of how to inv oke flawfinder. The first examples show various simple command-

line options. Flawfinder is designed to work well with text editors and integrated development environ-

ments, so the next sections show how to integrate flawfinder into vim and emacs.

Simple command-line options

flawfinder /usr/src/linux-3.16

Examine all the C/C++ files in the directory /usr/src/linux-3.16 and all its subdirectories

(recursively), reporting on all hits found. By default flawfinder will skip symbolic links and

directories with names that start with a period.

flawfinder −−minlevel=4 .

Examine all the C/C++ files in the current directory and its subdirectories (recursively); only

report vulnerabilities level 4 and up (the two highest risk levels).

flawfinder −−inputs mydir

Examine all the C/C++ files in mydir and its subdirectories (recursively), and report func-

tions that take inputs (so that you can ensure that they filter the inputs appropriately).

flawfinder −−neverignore mydir

Examine all the C/C++ files in the directory mydir and its subdirectories, including even the

hits marked for ignoring in the code comments.

flawfinder −QD mydir

Examine mydir and report only the actual results (removing the header and footer of the out-

put). This form is useful if the output will be piped into other tools for further analysis. The

−C (−−columns) and −S (−−singleline) options can also be useful if you’re piping the data

into other tools.

flawfinder −QDSC mydir

Examine mydir, reporting only the actual results (no header or footer). Each hit is reported

on one line, and column numbers are reported. This can be a useful command if you are

feeding flawfinder output to other tools.

Flawfinder 3 Aug 2014 6

FLAWFINDER(1) Flawfinder FLAWFINDER(1)

flawfinder −−quiet −−html −−context mydir > results.html

Examine all the C/C++ files in the directory mydir and its subdirectories, and produce an

HTML formatted version of the results. Source code management systems (such as Source-

Forge and Savannah) might use a command like this.

flawfinder −−quiet −−savehitlist saved.hits *.[ch]

Examine all .c and .h files in the current directory. Don’t report on the status of processing,

and save the resulting hitlist (the set of all hits) in the file saved.hits.

flawfinder −−diffhitlist saved.hits *.[ch]

Examine all .c and .h files in the current directory, and show any hits that weren’t already in

the file saved.hits. This can be used to show only the ‘‘new’’ vulnerabilities in a modified

program, if saved.hits was created from the older version of the program being analyzed.

flawfinder −−patch recent.patch .

Examine the current directory recursively, but only report lines that were changed or added

in the already-applied patchfile named recent.patch.

flawfinder −−regex "CWE-120|CWE-126" src/

Examine directory src recursively, but only report hits where CWE-120 or CWE-126 apply.

Invoking from vim

The text editor vim includes a "quickfix" mechanism that works well with flawfinder, so that you can easily

view the warning messages and jump to the relevant source code.

First, you need to invoke flawfinder to create a list of hits, and there are two ways to do this. The first way

is to start flawfinder first, and then (using its output) invoke vim. The second way is to start (or continue to

run) vim, and then invoke flawfinder (typically from inside vim).

For the first way, run flawfinder and store its output in some FLAWFILE (say "flawfile"), then invoke vim

using its -q option, like this: "vim -q flawfile". The second way (starting flawfinder after starting vim) can

be done a legion of ways. One is to invoke flawfinder using a shell command, ":!flawfinder-command >

FLAWFILE", then follow that with the command ":cf FLAWFILE". Another way is to store the flawfinder

command in your makefile (as, say, a pseudocommand like "flaw"), and then run ":make flaw".

In all these cases you need a command for flawfinder to run. A plausible command, which places each hit

in its own line (-S) and removes headers and footers that would confuse it, is:

flawfinder −SQD .

You can now use various editing commands to view the results. The command ":cn" displays the next hit;

":cN" displays the previous hit, and ":cr" rewinds back to the first hit. ":copen" will open a window to show

the current list of hits, called the "quickfix window"; ":cclose" will close the quickfix window. If the buffer

in the used window has changed, and the error is in another file, jumping to the error will fail. You have to

make sure the window contains a buffer which can be abandoned before trying to jump to a new file, say by

saving the file; this prevents accidental data loss.

Invoking from emacs

The text editor / operating system emacs includes "grep mode" and "compile mode" mechanisms that work

well with flawfinder, making it easy to view warning messages, jump to the relevant source code, and fix

any problems you find.

First, you need to invoke flawfinder to create a list of warning messages. You can use "grep mode" or

"compile mode" to create this list. Often "grep mode" is more convenient; it leaves compile mode

untouched so you can easily recompile once you’ve changed something. However, if you want to jump to

Flawfinder 3 Aug 2014 7

FLAWFINDER(1) Flawfinder FLAWFINDER(1)

the exact column position of a hit, compile mode may be more convenient because emacs can use the col-

umn output of flawfinder to directly jump to the right location without any special configuration.

To use grep mode, enter the command "M-x grep" and then enter the needed flawfinder command. To use

compile mode, enter the command "M-x compile" and enter the needed flawfinder command. This is a

meta-key command, so you’ll need to use the meta key for your keyboard (this is usually the ESC key). As

with all emacs commands, you’ll need to press RETURN after typing "grep" or "compile". So on many

systems, the grep mode is invoked by typing ESC x g r e p RETURN.

You then need to enter a command, removing whatever was there before if necessary. A plausible com-

mand is:

flawfinder −SQDC .

This command makes every hit report a single line, which is much easier for tools to handle. The quiet and

dataonly options remove the other status information not needed for use inside emacs. The trailing period

means that the current directory and all descendents are searched for C/C++ code, and analyzed for flaws.

Once you’ve inv oked flawfinder, you can use emacs to jump around in its results. The command C-x `

(Control-x backtick) visits the source code location for the next warning message. C-u C-x ` (control-u

control-x backtick) restarts from the beginning. You can visit the source for any particular error message

by moving to that hit message in the *compilation* buffer or *grep* buffer and typing the return key.

(Technical note: in the compilation buffer, this invokes compile-goto-error.) You can also click the

Mouse-2 button on the error message (you don’t need to switch to the *compilation* buffer first).

If you want to use grep mode to jump to specific columns of a hit, you’ll need to specially configure emacs

to do this. To do this, modify the emacs variable "grep-regexp-alist". This variable tells Emacs how to

parse output of a "grep" command, similar to the variable "compilation-error-regexp-alist" which lists vari-

ous formats of compilation error messages.

Invoking from Integrated Development Environments (IDEs)

For (other) IDEs, consult your IDE’s set of plug-ins.

COMMON WEAKNESS ENUMERATION (CWE)
The Common Weakness Enumeration (CWE) is ‘‘a formal list or dictionary of common software weak-

nesses that can occur in software’s architecture, design, code or implementation that can lead to exploitable

security vulnerabilities... created to serve as a common language for describing software security weak-

nesses’’ (http://cwe.mitre.org/about/faq.html). For more information on CWEs, see http://cwe.mitre.org.

Flawfinder supports the CWE and is officially CWE-Compatible. Hit descriptions typically include a rele-

vant Common Weakness Enumeration (CWE) identifier in parentheses where there is known to be a rele-

vant CWE. For example, many of the buffer-related hits mention CWE-120, the CWE identifier for ‘‘buffer

copy without checking size of input’’ (aka ‘‘Classic Buffer Overflow’’). In a few cases more than one CWE

identifier may be listed. The HTML report also includes hypertext links to the CWE definitions hosted at

MITRE. In this way, flawfinder is designed to meet the CWE-Output requirement.

In some cases there are CWE mapping and usage challenges; here is how flawfinder handles them. If the

same entry maps to multiple CWEs simultaneously, all the CWE mappings are listed as separated by com-

mas. This often occurs with CWE-20, Improper Input Validation; thus the report "CWE-676, CWE-120"

maps to two CWEs. In addition, flawfinder provides additional information for those who are are interested

in the CWE/SANS top 25 list 2011 (http://cwe.mitre.org/top25/) when mappings are not directly to them.

Many people will want to search for specific CWEs in this top 25 list, such as CWE-120 (classic buffer

overflow). The challenge is that some flawfinder hits map to a more general CWE that would include a top

25 item, while in some other cases hits map to a more specific vulnerability that is only a subset of a top 25

item. To resolve this, in some cases flawfinder will list a sequence of CWEs in the format "more-gen-

eral/more-specific", where the CWE actually being mapped is followed by a "!". This is always done

whenever a flaw is not mapped directly to a top 25 CWE, but the mapping is related to such a CWE. So

"CWE-119!/CWE-120" means that the vulnerability is mapped to CWE-119 and that CWE-120 is a subset

Flawfinder 3 Aug 2014 8

FLAWFINDER(1) Flawfinder FLAWFINDER(1)

of CWE-119. In contrast, "CWE-362/CWE-367!" means that the hit is mapped to CWE-367, a subset of

CWE-362. Note that this is a subtle syntax change from flawfinder version 1.31; in flawfinder version 1.31,

the form "more-general:more-specific" meant what is now listed as "more-general!/more-specific", while

"more-general/more-specific" meant "more-general/more-specific!". Tools can handle both the version 1.31

and the current format, if they wish, by noting that the older format did not use "!" at all (and thus this is

easy to distinguish). These mapping mechanisms simplify searching for certain CWEs.

CWE version 2.7 (released June 23, 2014) was used for the mapping. The current CWE mappings select

the most specific CWE the tool can determine. In theory, most CWE security elements (signatures/patterns

that the tool searches for) could theoretically be mapped to CWE-676 (Use of Potentially Dangerous Func-

tion), but such a mapping would not be useful. Thus, more specific mappings were preferred where one

could be found. Flawfinder is a lexical analysis tool; as a result, it is impractical for it to be more specific

than the mappings currently implemented. This also means that it is unlikely to need much updating for

map currency; it simply doesn’t hav e enough information to refine to a detailed CWE level that CWE

changes would typically affect. The list of CWE identifiers was generated automatically using "make

show-cwes", so there is confidence that this list is correct. Please report CWE mapping problems as bugs if

you find any.

Flawfinder may fail to find a vulnerability, even if flawfinder covers one of these CWE weaknesses. That

said, flawfinder does find vulnerabilities listed by the CWEs it covers, and it will not report lines without

those vulnerabilities in many cases. Thus, as required for any tool intending to be CWE compatible,

flawfinder has a rate of false positives less than 100% and a rate of false negatives less than 100%.

Flawfinder almost always reports whenever it finds a match to a CWE security element (a signature/pattern

as defined in its database), though certain obscure constructs can cause it to fail (see BUGS below).

Flawfinder can report on the following CWEs (these are the CWEs that flawfinder covers; ‘‘*’’ marks those

in the CWE/SANS top 25 list):

• CWE-20: Improper Input Validation

• CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘‘Path Traversal’’)

• CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘‘OS Command Injec-

tion’’)*

• CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer (a parent of

CWE-120*, so this is shown as CWE-119!/CWE-120)

• CWE-120: Buffer Copy without Checking Size of Input (‘‘Classic Buffer Overflow’’)*

• CWE-126: Buffer Over-read

• CWE-134: Uncontrolled Format String*

• CWE-190: Integer Overflow or Wraparound*

• CWE-250: Execution with Unnecessary Privileges

• CWE-327: Use of a Broken or Risky Cryptographic Algorithm*

• CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization (‘‘Race Condi-

tion’’)

• CWE-377: Insecure Temporary File

• CWE-676: Use of Potentially Dangerous Function*

• CWE-732: Incorrect Permission Assignment for Critical Resource*

• CWE-785: Use of Path Manipulation Function without Maximum-sized Buffer (child of CWE-120*, so

this is shown as CWE-120/CWE-785)

• CWE-807: Reliance on Untrusted Inputs in a Security Decision*

• CWE-829: Inclusion of Functionality from Untrusted Control Sphere*

You can select a specific subset of CWEs to report by using the ‘‘−−regex’’ (-e) option. This option accepts

Flawfinder 3 Aug 2014 9

FLAWFINDER(1) Flawfinder FLAWFINDER(1)

a regular expression, so you can select multiple CWEs, e.g., ‘‘−−regex "CWE-120|CWE-126"’’. If you

select multiple CWEs with ‘‘|’’ on a command line you will typically need to quote the parameters (since an

unquoted ‘‘|’’ is the pipe symbol). Flawfinder is designed to meet the CWE-Searchable requirement.

If your goal is to report a subset of CWEs that are listed in a file, that can be achieved on a Unix-like sys-

tem using the ‘‘−−regex’’ aka ‘‘−e’’ option. The file must be in regular expression format. For example,

‘‘flawfinder -e $(cat file1)’’ would report only hits that matched the pattern in ‘‘file1’’. If file1 contained

‘‘CWE-120|CWE-126’’ it would only report hits matching those CWEs.

A list of all CWE security elements (the signatures/patterns that flawfinder looks for) can be found by using

the ‘‘−−listrules’’ option. Each line lists the signature token (typically a function name) that may lead to a

hit, the default risk level, and the default warning (which includes the default CWE identifier). For most

purposes this is also enough if you want to see what CWE security elements map to which CWEs, or the

reverse. For example, to see the most of the signatures (function names) that map to CWE-327, without

seeing the default risk level or detailed warning text, run ‘‘flawfinder −−listrules | grep CWE-327 | cut -f1’’.

You can also see the tokens without a CWE mapping this way by running ‘‘flawfinder -D --listrules | grep

-v CWE-’’. However, while −−listrules lists all CWE security elements, it only lists the default mappings

from CWE security elements to CWE identifiers. It does not include the refinements that flawfinder applies

(e.g., by examining function parameters).

If you want a detailed and exact mapping between the CWE security elements and CWE identifiers, the

flawfinder source code (included in the distribution) is the best place for that information. This detailed

information is primarily of interest to those few people who are trying to refine the CWE mappings of

flawfinder or refine CWE in general. The source code documents the mapping between the security ele-

ments to the respective CWE identifiers, and is a single Python file. The ‘‘c_rules’’ dataset defines most

rules, with reference to a function that may make further refinements. You can search the dataset for func-

tion names to see what CWE it generates by default; if first parameter is not ‘‘normal’’ then that is the name

of a refining Python method that may select different CWEs (depending on additional information). Con-

versely, you can search for ‘‘CWE-number’’ and find what security elements (signatures or patterns) refer

to that CWE identifier. For most people, this is much more than they need; most people just want to scan

their source code to quickly find problems.

SECURITY
The whole point of this tool is to help find vulnerabilities so they can be fixed. However, dev elopers and

reviewers must know how to dev elop secure software to use this tool, because otherwise, a fool with a tool

is still a fool. My book at http://www.dwheeler.com/secure-programs may help.

This tool should be, at most, a small part of a larger software development process designed to eliminate or

reduce the impact of vulnerabilities. Developers and reviewers need know how to dev elop secure software,

and they need to apply this knowledge to reduce the risks of vulnerabilities in the first place.

Different vulnerability-finding tools tend to find different vulnerabilities. Thus, you are best off using

human review and a variety of tools. This tool can help find some vulnerabilities, but by no means all.

You should always analyze a copy of the source program being analyzed, not a directory that can be modi-

fied by a developer while flawfinder is performing the analysis. This is especially true if you don’t necess-

ily trust a developer of the program being analyzed. If an attacker has control over the files while you’re

analyzing them, the attacker could move files around or change their contents to prevent the exposure of a

security problem (or create the impression of a problem where there is none). If you’re worried about mali-

cious programmers you should do this anyway, because after analysis you’ll need to verify that the code

ev entually run is the code you analyzed. Also, do not use the −−allowlink option in such cases; attackers

could create malicious symbolic links to files outside of their source code area (such as /etc/passwd).

Source code management systems (like SourceForge and Savannah) definitely fall into this category; if

you’re maintaining one of those systems, first copy or extract the files into a separate directory (that can’t

be controlled by attackers) before running flawfinder or any other code analysis tool.

Note that flawfinder only opens regular files, directories, and (if requested) symbolic links; it will never

Flawfinder 3 Aug 2014 10

FLAWFINDER(1) Flawfinder FLAWFINDER(1)

open other kinds of files, even if a symbolic link is made to them. This counters attackers who insert

unusual file types into the source code. However, this only works if the filesystem being analyzed can’t be

modified by an attacker during the analysis, as recommended above. This protection also doesn’t work on

Cygwin platforms, unfortunately.

Cygwin systems (Unix emulation on top of Windows) have an additional problem if flawfinder is used to

analyze programs that the analyst cannot trust. The problem is due to a design flaw in Windows (that it

inherits from MS-DOS). On Windows and MS-DOS, certain filenames (e.g., ‘‘com1’’) are automatically

treated by the operating system as the names of peripherals, and this is true even when a full pathname is

given. Yes, Windows and MS-DOS really are designed this badly. Flawfinder deals with this by checking

what a filesystem object is, and then only opening directories and regular files (and symlinks if enabled).

Unfortunately, this doesn’t work on Cygwin; on at least some versions of Cygwin on some versions of Win-

dows, merely trying to determine if a file is a device type can cause the program to hang. A workaround is

to delete or rename any filenames that are interpreted as device names before performing the analysis.

These so-called ‘‘reserved names’’ are CON, PRN, AUX, CLOCK$, NUL, COM1-COM9, and

LPT1-LPT9, optionally followed by an extension (e.g., ‘‘com1.txt’’), in any directory, and in any case

(Windows is case-insensitive).

Do not load or diff hitlists from untrusted sources. They are implemented using the Python pickle module,

and the pickle module is not intended to be secure against erroneous or maliciously constructed data.

Stored hitlists are intended for later use by the same user who created the hitlist; in that context this restric-

tion is not a problem.

BUGS
Flawfinder is based on simple text pattern matching, which is part of its fundamental design and not easily

changed. This design approach leads to a number of fundamental limitations, e.g., a higher false positive

rate, and is the underlying cause of most of the bugs listed here. On the positive side, flawfinder doesn’t get

confused by many complicated preprocessor sequences that other tools sometimes choke on; flawfinder can

often handle code that cannot link, and sometimes cannot even build.

Flawfinder is currently limited to C/C++. In addition, when analyzing C++ it focuses primarily on the C

subset of C++. For example, flawfinder does not report on expressions like cin >> charbuf, where charbuf

is a char array. That is because flawfinder doesn’t hav e type information, and ">>" is safe with many other

types; reporting on all ">>" would lead to too many false positives. That said, it’s designed so that adding

support for other languages should be easy where its text-based approach can usefully apply.

Flawfinder can be fooled by user-defined functions or method names that happen to be the same as those

defined as ‘‘hits’’ in its database, and will often trigger on definitions (as well as uses) of functions with the

same name. This is typically not a problem for C code. In C code, a function with the same name as a

common library routine name often indicates that the developer is simply rewriting a common library rou-

tine with the same interface, say for portability’s sake. C programs tend to avoid reusing the same name for

a different purpose (since in C function names are global by default). There are reasonable odds that these

rewritten routines will be vulnerable to the same kinds of misuse, and thus, reusing these rules is a reason-

able approach. However, this can be a much more serious problem in C++ code which heavily uses classes

and namespaces, since the same method name may have many different meanings. The −−falsepositive

option can help somewhat in this case. If this is a serious problem, feel free to modify the program, or

process the flawfinder output through other tools to remove the false positives.

Preprocessor commands embedded in the middle of a parameter list of a call can cause problems in parsing,

in particular, if a string is opened and then closed multiple times using an #ifdef .. #else construct,

flawfinder gets confused. Such constructs are bad style, and will confuse many other tools too. If you must

analyze such files, rewrite those lines. Thankfully, these are quite rare.

Some complex or unusual constructs can mislead flawfinder. In particular, if a parameter begins with get-

text(" and ends with), flawfinder will presume that the parameter of gettext is a constant. This means it

will get confused by patterns like gettext("hi") + function("bye"). In practice, this doesn’t seem to be a

problem; gettext() is usually wrapped around the entire parameter.

Flawfinder 3 Aug 2014 11

FLAWFINDER(1) Flawfinder FLAWFINDER(1)

The routine to detect statically defined character arrays uses simple text matching; some complicated

expressions can cause it to trigger or not trigger unexpectedly.

Flawfinder looks for specific patterns known to be common mistakes. Flawfinder (or any tool like it) is not

a good tool for finding intentionally malicious code (e.g., Trojan horses); malicious programmers can easily

insert code that would not be detected by this kind of tool.

Flawfinder looks for specific patterns known to be common mistakes in application code. Thus, it is likely

to be less effective analyzing programs that aren’t application-layer code (e.g., kernel code or self-hosting

code). The techniques may still be useful; feel free to replace the database if your situation is significantly

different from normal.

Flawfinder’s output format (filename:linenumber, followed optionally by a :columnnumber) can be misun-

derstood if any source files have very weird filenames. Filenames embedding a newline/linefeed character

will cause odd breaks, and filenames including colon (:) are likely to be misunderstood. This is especially

important if flawfinder’s output is being used by other tools, such as filters or text editors. If you’re looking

at new code, examine the files for such characters. It’s incredibly unwise to have such filenames anyway;

many tools can’t handle such filenames at all. Newline and linefeed are often used as internal data delime-

ters. The colon is often used as special characters in filesystems: MacOS uses it as a directory separator,

Windows/MS-DOS uses it to identify drive letters, Windows/MS-DOS inconsistently uses it to identify spe-

cial devices like CON:, and applications on many platforms use the colon to identify URIs/URLs. File-

names including spaces and/or tabs don’t cause problems for flawfinder, though note that other tools might

have problems with them.

Flawfinder is not internationalized, so it currently does not support localization.

In general, flawfinder attempts to err on the side of caution; it tends to report hits, so that they can be exam-

ined further, instead of silently ignoring them. Thus, flawfinder prefers to have false positives (reports that

turn out to not be problems) rather than false negatives (failure to report on a security vulnerability). But

this is a generality; flawfinder uses simplistic heuristics and simply can’t get everything "right".

Security vulnerabilities might not be identified as such by flawfinder, and conversely, some hits aren’t really

security vulnerabilities. This is true for all static security scanners, and is especially true for tools like

flawfinder that use a simple lexical analysis and pattern analysis to identify potential vulnerabilities. Still, it

can serve as a useful aid for humans, helping to identify useful places to examine further, and that’s the

point of this simple tool.

SEE ALSO
See the flawfinder website at http://www.dwheeler.com/flawfinder. You should also see the Secure Pro-

gramming for Unix and Linux HOWTO at http://www.dwheeler.com/secure-programs.

AUTHOR
David A. Wheeler (dwheeler@dwheeler.com).

Flawfinder 3 Aug 2014 12

